ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.05893
27
20

PU-Flow: a Point Cloud Upsampling Network with Normalizing Flows

13 July 2021
Aihua Mao
Zihui Du
Junhui Hou
Yaqi Duan
Yong-jin Liu
Ying He
    3DPC
ArXivPDFHTML
Abstract

Point cloud upsampling aims to generate dense point clouds from given sparse ones, which is a challenging task due to the irregular and unordered nature of point sets. To address this issue, we present a novel deep learning-based model, called PU-Flow, which incorporates normalizing flows and weight prediction techniques to produce dense points uniformly distributed on the underlying surface. Specifically, we exploit the invertible characteristics of normalizing flows to transform points between Euclidean and latent spaces and formulate the upsampling process as ensemble of neighbouring points in a latent space, where the ensemble weights are adaptively learned from local geometric context. Extensive experiments show that our method is competitive and, in most test cases, it outperforms state-of-the-art methods in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency. The source code will be publicly available at https://github.com/unknownue/pu-flow.

View on arXiv
Comments on this paper