ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.08024
  4. Cited By
Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent
  Dynamical Systems

Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems

16 July 2021
Shaan Desai
M. Mattheakis
David Sondak
P. Protopapas
Stephen J. Roberts
    AI4CE
ArXivPDFHTML

Papers citing "Port-Hamiltonian Neural Networks for Learning Explicit Time-Dependent Dynamical Systems"

12 / 12 papers shown
Title
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
72
1
0
15 Dec 2024
Human-Robot Cooperative Distribution Coupling for Hamiltonian-Constrained Social Navigation
Human-Robot Cooperative Distribution Coupling for Hamiltonian-Constrained Social Navigation
Weizheng Wang
Chao Yu
Yu Wang
Byung-Cheol Min
104
2
0
20 Sep 2024
Learning Switching Port-Hamiltonian Systems with Uncertainty
  Quantification
Learning Switching Port-Hamiltonian Systems with Uncertainty Quantification
Thomas Beckers
Tom Z. Jiahao
George J. Pappas
23
2
0
15 May 2023
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with
  Physics Prior
Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior
Thomas Beckers
Jacob H. Seidman
P. Perdikaris
George J. Pappas
PINN
16
17
0
15 May 2023
Physics-Informed Learning Using Hamiltonian Neural Networks with Output
  Error Noise Models
Physics-Informed Learning Using Hamiltonian Neural Networks with Output Error Noise Models
Sarvin Moradi
N. Jaensson
Roland Tóth
Maarten Schoukens
PINN
25
3
0
02 May 2023
Pseudo-Hamiltonian neural networks for learning partial differential
  equations
Pseudo-Hamiltonian neural networks for learning partial differential equations
Sølve Eidnes
K. Lye
16
10
0
27 Apr 2023
Thermodynamics of learning physical phenomena
Thermodynamics of learning physical phenomena
Elías Cueto
Francisco Chinesta
AI4CE
19
22
0
26 Jul 2022
Thermodynamics-informed graph neural networks
Thermodynamics-informed graph neural networks
Quercus Hernandez
Alberto Badías
Francisco Chinesta
Elías Cueto
AI4CE
PINN
25
31
0
03 Mar 2022
Noether Networks: Meta-Learning Useful Conserved Quantities
Noether Networks: Meta-Learning Useful Conserved Quantities
Ferran Alet
Dylan D. Doblar
Allan Zhou
J. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
65
26
0
06 Dec 2021
Structure-preserving Sparse Identification of Nonlinear Dynamics for
  Data-driven Modeling
Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling
Kookjin Lee
Nathaniel Trask
P. Stinis
30
24
0
11 Sep 2021
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
125
422
0
10 Mar 2020
Interaction Networks for Learning about Objects, Relations and Physics
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
263
1,400
0
01 Dec 2016
1