ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.10880
  4. Cited By
Using UMAP to Inspect Audio Data for Unsupervised Anomaly Detection
  under Domain-Shift Conditions

Using UMAP to Inspect Audio Data for Unsupervised Anomaly Detection under Domain-Shift Conditions

22 July 2021
A. Fernández
Mark D. Plumbley
ArXivPDFHTML

Papers citing "Using UMAP to Inspect Audio Data for Unsupervised Anomaly Detection under Domain-Shift Conditions"

3 / 3 papers shown
Title
Empirical Analysis of Anomaly Detection on Hyperspectral Imaging Using
  Dimension Reduction Methods
Empirical Analysis of Anomaly Detection on Hyperspectral Imaging Using Dimension Reduction Methods
Dongeon Kim
YeongHyeon Park
16
0
0
09 Jan 2024
Why do Angular Margin Losses work well for Semi-Supervised Anomalous
  Sound Detection?
Why do Angular Margin Losses work well for Semi-Supervised Anomalous Sound Detection?
Kevin Wilkinghoff
Frank Kurth
AAML
UQCV
25
8
0
27 Sep 2023
MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine
  Investigation and Inspection
MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection
Harsh Purohit
Ryo Tanabe
K. Ichige
Takashi Endo
Yuki Nikaido
Kaori Suefusa
Y. Kawaguchi
73
302
0
20 Sep 2019
1