Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.11889
Cited By
GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph Neural Networks
25 July 2021
Lucie Charlotte Magister
Dmitry Kazhdan
Vikash Singh
Pietro Lió
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph Neural Networks"
32 / 32 papers shown
Title
TreeX: Generating Global Graphical GNN Explanations via Critical Subtree Extraction
Shengyao Lu
Jiuding Yang
Baochun Li
Di Niu
48
0
0
12 Mar 2025
On the Probability of Necessity and Sufficiency of Explaining Graph Neural Networks: A Lower Bound Optimization Approach
Ruichu Cai
Yuxuan Zhu
Xuexin Chen
Yuan Fang
Min-man Wu
Jie Qiao
Z. Hao
46
7
0
31 Dec 2024
Disentangled and Self-Explainable Node Representation Learning
Simone Piaggesi
Andre' Panisson
Megha Khosla
18
0
0
28 Oct 2024
Explaining Hypergraph Neural Networks: From Local Explanations to Global Concepts
Shiye Su
Iulia Duta
Lucie Charlotte Magister
Pietro Lio'
FAtt
29
0
0
10 Oct 2024
Semi-supervised Concept Bottleneck Models
Lijie Hu
Tianhao Huang
Huanyi Xie
Chenyang Ren
Zhengyu Hu
Lu Yu
Lu Yu
Ping Ma
Di Wang
41
4
0
27 Jun 2024
Automated Molecular Concept Generation and Labeling with Large Language Models
Shichang Zhang
Botao Xia
Zimin Zhang
Qianli Wu
Fang Sun
Ziniu Hu
Yizhou Sun
33
0
0
13 Jun 2024
AnyCBMs: How to Turn Any Black Box into a Concept Bottleneck Model
Gabriele Dominici
Pietro Barbiero
Francesco Giannini
M. Gjoreski
Marc Langhenirich
28
3
0
26 May 2024
MAGE: Model-Level Graph Neural Networks Explanations via Motif-based Graph Generation
Zhaoning Yu
Hongyang Gao
37
3
0
21 May 2024
Interpretable Network Visualizations: A Human-in-the-Loop Approach for Post-hoc Explainability of CNN-based Image Classification
Matteo Bianchi
Antonio De Santis
Andrea Tocchetti
Marco Brambilla
MILM
FAtt
14
1
0
06 May 2024
Global Concept Explanations for Graphs by Contrastive Learning
Jonas Teufel
Pascal Friederich
31
1
0
25 Apr 2024
Uncertainty in Graph Neural Networks: A Survey
Fangxin Wang
Yuqing Liu
Kay Liu
Yibo Wang
Sourav Medya
Philip S. Yu
AI4CE
46
8
0
11 Mar 2024
Concept-based Explainable Artificial Intelligence: A Survey
Eleonora Poeta
Gabriele Ciravegna
Eliana Pastor
Tania Cerquitelli
Elena Baralis
LRM
XAI
19
41
0
20 Dec 2023
Digital Histopathology with Graph Neural Networks: Concepts and Explanations for Clinicians
Alessandro Farace di Villaforesta
Lucie Charlotte Magister
Pietro Barbiero
Pietro Lió
33
1
0
04 Dec 2023
Everybody Needs a Little HELP: Explaining Graphs via Hierarchical Concepts
Jonas Jürß
Lucie Charlotte Magister
Pietro Barbiero
Pietro Lió
Nikola Simidjievski
25
1
0
25 Nov 2023
Interpretability is in the Mind of the Beholder: A Causal Framework for Human-interpretable Representation Learning
Emanuele Marconato
Andrea Passerini
Stefano Teso
14
13
0
14 Sep 2023
SHARCS: Shared Concept Space for Explainable Multimodal Learning
Gabriele Dominici
Pietro Barbiero
Lucie Charlotte Magister
Pietro Lio'
Nikola Simidjievski
15
4
0
01 Jul 2023
On the Interplay of Subset Selection and Informed Graph Neural Networks
Niklas Breustedt
Paolo Climaco
Jochen Garcke
J. Hamaekers
Gitta Kutyniok
D. Lorenz
Rick Oerder
Chirag Varun Shukla
25
0
0
15 Jun 2023
A Survey on Explainability of Graph Neural Networks
Jaykumar Kakkad
Jaspal Jannu
Kartik Sharma
Charu C. Aggarwal
Sourav Medya
28
23
0
02 Jun 2023
Quantifying the Intrinsic Usefulness of Attributional Explanations for Graph Neural Networks with Artificial Simulatability Studies
Jonas Teufel
Luca Torresi
Pascal Friederich
FAtt
14
1
0
25 May 2023
Interpretable Graph Networks Formulate Universal Algebra Conjectures
Francesco Giannini
S. Fioravanti
Oguzhan Keskin
A. Lupidi
Lucie Charlotte Magister
Pietro Lio'
Pietro Barbiero
AI4CE
11
3
0
17 May 2023
Interpretable Neural-Symbolic Concept Reasoning
Pietro Barbiero
Gabriele Ciravegna
Francesco Giannini
M. Zarlenga
Lucie Charlotte Magister
Alberto Tonda
Pietro Lio'
F. Precioso
M. Jamnik
G. Marra
NAI
LRM
56
38
0
27 Apr 2023
GCI: A (G)raph (C)oncept (I)nterpretation Framework
Dmitry Kazhdan
B. Dimanov
Lucie Charlotte Magister
Pietro Barbiero
M. Jamnik
Pietro Lio'
8
2
0
09 Feb 2023
MEGAN: Multi-Explanation Graph Attention Network
Jonas Teufel
Luca Torresi
Patrick Reiser
Pascal Friederich
11
8
0
23 Nov 2022
Explainer Divergence Scores (EDS): Some Post-Hoc Explanations May be Effective for Detecting Unknown Spurious Correlations
Shea Cardozo
Gabriel Islas Montero
Dmitry Kazhdan
B. Dimanov
Maleakhi A. Wijaya
M. Jamnik
Pietro Lio'
AAML
15
0
0
14 Nov 2022
GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data
Andrei Margeloiu
Nikola Simidjievski
Pietro Lio'
M. Jamnik
DD
AI4CE
17
5
0
11 Nov 2022
Explaining the Explainers in Graph Neural Networks: a Comparative Study
Antonio Longa
Steve Azzolin
G. Santin
G. Cencetti
Pietro Lio'
Bruno Lepri
Andrea Passerini
44
27
0
27 Oct 2022
Global Explainability of GNNs via Logic Combination of Learned Concepts
Steve Azzolin
Antonio Longa
Pietro Barbiero
Pietro Lio'
Andrea Passerini
25
54
0
13 Oct 2022
L2XGNN: Learning to Explain Graph Neural Networks
G. Serra
Mathias Niepert
26
7
0
28 Sep 2022
Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off
M. Zarlenga
Pietro Barbiero
Gabriele Ciravegna
G. Marra
Francesco Giannini
...
F. Precioso
S. Melacci
Adrian Weller
Pietro Lio'
M. Jamnik
71
52
0
19 Sep 2022
Global Concept-Based Interpretability for Graph Neural Networks via Neuron Analysis
Xuanyuan Han
Pietro Barbiero
Dobrik Georgiev
Lucie Charlotte Magister
Pietro Lió
MILM
16
41
0
22 Aug 2022
Encoding Concepts in Graph Neural Networks
Lucie Charlotte Magister
Pietro Barbiero
Dmitry Kazhdan
F. Siciliano
Gabriele Ciravegna
Fabrizio Silvestri
M. Jamnik
Pietro Lio'
12
21
0
27 Jul 2022
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
120
297
0
17 Oct 2019
1