Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2107.14351
Cited By
Contemporary Symbolic Regression Methods and their Relative Performance
29 July 2021
William La Cava
Patryk Orzechowski
Bogdan Burlacu
Fabrício Olivetti de Francca
M. Virgolin
Ying Jin
M. Kommenda
J. Moore
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Contemporary Symbolic Regression Methods and their Relative Performance"
17 / 117 papers shown
Title
Symbolic Regression in Materials Science: Discovering Interatomic Potentials from Data
Bogdan Burlacu
M. Kommenda
G. Kronberger
Stephan M. Winkler
M. Affenzeller
17
4
0
13 Jun 2022
GSR: A Generalized Symbolic Regression Approach
Tony Tohme
Dehong Liu
K. Youcef-Toumi
51
14
0
31 May 2022
Symbolic Expression Transformer: A Computer Vision Approach for Symbolic Regression
Jiachen Li
Ye Yuan
Hongze Shen
27
7
0
24 May 2022
DNNR: Differential Nearest Neighbors Regression
Youssef Nader
Leon Sixt
Tim Landgraf
26
13
0
17 May 2022
A Trillion Genetic Programming Instructions per Second
W. Langdon
14
3
0
06 May 2022
Taylor Genetic Programming for Symbolic Regression
Baihe He
Qiang Lu
Qingyun Yang
Jake Luo
Zhiguang Wang
16
29
0
28 Apr 2022
Coefficient Mutation in the Gene-pool Optimal Mixing Evolutionary Algorithm for Symbolic Regression
M. Virgolin
Peter A. N. Bosman
17
7
0
26 Apr 2022
Transformation-Interaction-Rational Representation for Symbolic Regression
F. O. França
28
8
0
25 Apr 2022
End-to-end symbolic regression with transformers
Pierre-Alexandre Kamienny
Stéphane dÁscoli
Guillaume Lample
Franccois Charton
17
161
0
22 Apr 2022
Population Diversity Leads to Short Running Times of Lexicase Selection
Thomas Helmuth
Johannes Lengler
William La Cava
14
7
0
13 Apr 2022
Automated Learning of Interpretable Models with Quantified Uncertainty
G. Bomarito
P. Leser
N. Strauss
K. Garbrecht
J. D. Hochhalter
31
10
0
12 Apr 2022
Less is More: A Call to Focus on Simpler Models in Genetic Programming for Interpretable Machine Learning
M. Virgolin
Eric Medvet
T. Alderliesten
Peter A. N. Bosman
12
6
0
05 Apr 2022
Multi-modal multi-objective model-based genetic programming to find multiple diverse high-quality models
E. Sijben
T. Alderliesten
Peter A. N. Bosman
8
5
0
24 Mar 2022
On genetic programming representations and fitness functions for interpretable dimensionality reduction
Thomas Uriot
M. Virgolin
T. Alderliesten
Peter A. N. Bosman
4
9
0
01 Mar 2022
Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic Regression
Dazhuang Liu
M. Virgolin
T. Alderliesten
Peter A. N. Bosman
17
12
0
14 Feb 2022
Chaos as an interpretable benchmark for forecasting and data-driven modelling
W. Gilpin
AI4TS
19
73
0
11 Oct 2021
Generative and reproducible benchmarks for comprehensive evaluation of machine learning classifiers
Patryk Orzechowski
J. Moore
ELM
VLM
17
13
0
14 Jul 2021
Previous
1
2
3