Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.00951
Cited By
Rethinking gradient sparsification as total error minimization
2 August 2021
Atal Narayan Sahu
Aritra Dutta
A. Abdelmoniem
Trambak Banerjee
Marco Canini
Panos Kalnis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Rethinking gradient sparsification as total error minimization"
35 / 35 papers shown
Title
Accelerated Distributed Optimization with Compression and Error Feedback
Yuan Gao
Anton Rodomanov
Jeremy Rack
Sebastian U. Stich
38
0
0
11 Mar 2025
EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
Shih-yang Liu
Huck Yang
Nai Chit Fung
Nai Chit Fung
Hongxu Yin
...
Jan Kautz
Yu-Chun Wang
Pavlo Molchanov
Min-Hung Chen
Min-Hung Chen
MQ
29
0
0
28 Oct 2024
Novel Gradient Sparsification Algorithm via Bayesian Inference
Ali Bereyhi
B. Liang
G. Boudreau
Ali Afana
28
2
0
23 Sep 2024
Sparse Incremental Aggregation in Multi-Hop Federated Learning
Sourav Mukherjee
N. Razmi
Armin Dekorsy
P. Popovski
Bho Matthiesen
FedML
19
1
0
25 Jul 2024
VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections
Roy Miles
Pradyumna Reddy
Ismail Elezi
Jiankang Deng
VLM
19
3
0
28 May 2024
FedMPQ: Secure and Communication-Efficient Federated Learning with Multi-codebook Product Quantization
Xu Yang
Jiapeng Zhang
Qifeng Zhang
Zhuo Tang
MQ
22
0
0
21 Apr 2024
Communication-Efficient Large-Scale Distributed Deep Learning: A Comprehensive Survey
Feng Liang
Zhen Zhang
Haifeng Lu
Victor C. M. Leung
Yanyi Guo
Xiping Hu
GNN
26
6
0
09 Apr 2024
SignSGD with Federated Voting
Chanho Park
H. Vincent Poor
Namyoon Lee
FedML
27
1
0
25 Mar 2024
Preserving Near-Optimal Gradient Sparsification Cost for Scalable Distributed Deep Learning
Daegun Yoon
Sangyoon Oh
30
0
0
21 Feb 2024
Communication-Efficient Distributed Learning with Local Immediate Error Compensation
Yifei Cheng
Li Shen
Linli Xu
Xun Qian
Shiwei Wu
Yiming Zhou
Tie Zhang
Dacheng Tao
Enhong Chen
32
0
0
19 Feb 2024
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Aritra Dutta
El Houcine Bergou
Soumia Boucherouite
Nicklas Werge
M. Kandemir
Xin Li
13
0
0
19 Oct 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
32
5
0
15 Oct 2023
MiCRO: Near-Zero Cost Gradient Sparsification for Scaling and Accelerating Distributed DNN Training
Daegun Yoon
Sangyoon Oh
19
1
0
02 Oct 2023
DEFT: Exploiting Gradient Norm Difference between Model Layers for Scalable Gradient Sparsification
Daegun Yoon
Sangyoon Oh
15
1
0
07 Jul 2023
Communication Resources Constrained Hierarchical Federated Learning for End-to-End Autonomous Driving
Weihua Kou
Shuai Wang
Guangxu Zhu
Bin Luo
Yingxian Chen
Derrick Wing Kwan Ng
Yik-Chung Wu
11
12
0
28 Jun 2023
Leveraging The Edge-to-Cloud Continuum for Scalable Machine Learning on Decentralized Data
A. Abdelmoniem
22
1
0
19 Jun 2023
A Guide Through the Zoo of Biased SGD
Yury Demidovich
Grigory Malinovsky
Igor Sokolov
Peter Richtárik
25
22
0
25 May 2023
Momentum Provably Improves Error Feedback!
Ilyas Fatkhullin
A. Tyurin
Peter Richtárik
8
19
0
24 May 2023
Unified analysis of SGD-type methods
Eduard A. Gorbunov
19
2
0
29 Mar 2023
Communication-efficient Federated Learning with Single-Step Synthetic Features Compressor for Faster Convergence
Yuhao Zhou
Mingjia Shi
Yuanxi Li
Qing Ye
Yanan Sun
Jiancheng Lv
8
3
0
27 Feb 2023
Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification in the Presence of Data Heterogeneity
Richeng Jin
Xiaofan He
C. Zhong
Zhaoyang Zhang
Tony Q. S. Quek
H. Dai
FedML
16
1
0
19 Feb 2023
L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient and Accurate Deep Learning
Mohammadreza Alimohammadi
I. Markov
Elias Frantar
Dan Alistarh
22
5
0
31 Oct 2022
Personalized Federated Learning with Communication Compression
El Houcine Bergou
Konstantin Burlachenko
Aritra Dutta
Peter Richtárik
FedML
69
9
0
12 Sep 2022
Towards Energy-Aware Federated Learning on Battery-Powered Clients
Amna Arouj
A. Abdelmoniem
16
26
0
09 Aug 2022
Towards Efficient Communications in Federated Learning: A Contemporary Survey
Zihao Zhao
Yuzhu Mao
Yang Liu
Linqi Song
Ouyang Ye
Xinlei Chen
Wenbo Ding
FedML
41
59
0
02 Aug 2022
Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with Communication Compression
Xinmeng Huang
Yiming Chen
W. Yin
Kun Yuan
14
25
0
08 Jun 2022
Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation
Rustem Islamov
Xun Qian
Slavomír Hanzely
M. Safaryan
Peter Richtárik
22
16
0
07 Jun 2022
Variance Reduction is an Antidote to Byzantines: Better Rates, Weaker Assumptions and Communication Compression as a Cherry on the Top
Eduard A. Gorbunov
Samuel Horváth
Peter Richtárik
Gauthier Gidel
AAML
13
0
0
01 Jun 2022
FedShuffle: Recipes for Better Use of Local Work in Federated Learning
Samuel Horváth
Maziar Sanjabi
Lin Xiao
Peter Richtárik
Michael G. Rabbat
FedML
25
21
0
27 Apr 2022
Distributed Methods with Absolute Compression and Error Compensation
Marina Danilova
Eduard A. Gorbunov
11
5
0
04 Mar 2022
OLIVE: Oblivious Federated Learning on Trusted Execution Environment against the risk of sparsification
Fumiyuki Kato
Yang Cao
Masatoshi Yoshikawa
FedML
6
5
0
15 Feb 2022
An Efficient Statistical-based Gradient Compression Technique for Distributed Training Systems
A. Abdelmoniem
Ahmed Elzanaty
Mohamed-Slim Alouini
Marco Canini
49
73
0
26 Jan 2021
Linearly Converging Error Compensated SGD
Eduard A. Gorbunov
D. Kovalev
Dmitry Makarenko
Peter Richtárik
158
77
0
23 Oct 2020
Detached Error Feedback for Distributed SGD with Random Sparsification
An Xu
Heng-Chiao Huang
23
9
0
11 Apr 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
243
1,791
0
17 Sep 2019
1