ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.04172
  4. Cited By
Johnson-Lindenstrauss Lemma, Linear and Nonlinear Random Projections,
  Random Fourier Features, and Random Kitchen Sinks: Tutorial and Survey

Johnson-Lindenstrauss Lemma, Linear and Nonlinear Random Projections, Random Fourier Features, and Random Kitchen Sinks: Tutorial and Survey

9 August 2021
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
ArXivPDFHTML

Papers citing "Johnson-Lindenstrauss Lemma, Linear and Nonlinear Random Projections, Random Fourier Features, and Random Kitchen Sinks: Tutorial and Survey"

3 / 3 papers shown
Title
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Stochastic Taylor Derivative Estimator: Efficient amortization for arbitrary differential operators
Zekun Shi
Zheyuan Hu
Min-Bin Lin
Kenji Kawaguchi
166
5
0
27 Nov 2024
Generative Adversarial Networks and Adversarial Autoencoders: Tutorial
  and Survey
Generative Adversarial Networks and Adversarial Autoencoders: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
GAN
34
12
0
26 Nov 2021
The role of exchangeability in causal inference
The role of exchangeability in causal inference
O. Saarela
D. Stephens
E. Moodie
36
5
0
02 Jun 2020
1