ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.05094
  4. Cited By
Representation Learning for Remote Sensing: An Unsupervised Sensor
  Fusion Approach

Representation Learning for Remote Sensing: An Unsupervised Sensor Fusion Approach

11 August 2021
Aidan M. Swope
X. Rudelis
Kyle T. Story
    SSL
ArXivPDFHTML

Papers citing "Representation Learning for Remote Sensing: An Unsupervised Sensor Fusion Approach"

14 / 14 papers shown
Title
TerraMind: Large-Scale Generative Multimodality for Earth Observation
TerraMind: Large-Scale Generative Multimodality for Earth Observation
Johannes Jakubik
Felix Yang
Benedikt Blumenstiel
Erik Scheurer
Rocco Sedona
...
P. Fraccaro
Thomas Brunschwiler
Gabriele Cavallaro
Juan Bernabé-Moreno
Nicolas Longepe
MLLM
VLM
57
2
0
15 Apr 2025
Contrastive ground-level image and remote sensing pre-training improves
  representation learning for natural world imagery
Contrastive ground-level image and remote sensing pre-training improves representation learning for natural world imagery
Andy V. Huynh
Lauren E. Gillespie
Jael Lopez-Saucedo
Claire Tang
Rohan Sikand
Moisés Expósito-Alonso
SSL
41
5
0
28 Sep 2024
Cross-sensor self-supervised training and alignment for remote sensing
Cross-sensor self-supervised training and alignment for remote sensing
V. Marsocci
Nicolas Audebert
28
1
0
16 May 2024
USat: A Unified Self-Supervised Encoder for Multi-Sensor Satellite
  Imagery
USat: A Unified Self-Supervised Encoder for Multi-Sensor Satellite Imagery
Jeremy Irvin
Lucas Tao
Joanne Zhou
Yuntao Ma
Langston Nashold
Benjamin Liu
Andrew Y. Ng
ViT
36
20
0
02 Dec 2023
RemoteCLIP: A Vision Language Foundation Model for Remote Sensing
RemoteCLIP: A Vision Language Foundation Model for Remote Sensing
F. Liu
Delong Chen
Zhan-Rong Guan
Xiaocong Zhou
Jiale Zhu
Qiaolin Ye
Liyong Fu
Jun Zhou
VLM
68
191
0
19 Jun 2023
CMID: A Unified Self-Supervised Learning Framework for Remote Sensing
  Image Understanding
CMID: A Unified Self-Supervised Learning Framework for Remote Sensing Image Understanding
Dilxat Muhtar
Xue-liang Zhang
P. Xiao
Zhenshi Li
Feng-Xue Gu
SSL
29
49
0
19 Apr 2023
Enhancing Self-Supervised Learning for Remote Sensing with Elevation
  Data: A Case Study with Scarce And High Level Semantic Labels
Enhancing Self-Supervised Learning for Remote Sensing with Elevation Data: A Case Study with Scarce And High Level Semantic Labels
Omar A. Castaño-Idarraga
Raúl Ramos-Pollán
F. Kalaitzis
12
0
0
13 Apr 2023
Self-Supervised Pretraining on Satellite Imagery: a Case Study on
  Label-Efficient Vehicle Detection
Self-Supervised Pretraining on Satellite Imagery: a Case Study on Label-Efficient Vehicle Detection
Jules Bourcier
Thomas Floquet
G. Dashyan
Tugdual Ceillier
Alahari Karteek
Jocelyn Chanussot
SSL
28
1
0
21 Oct 2022
Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
  for Multi-Resolution Satellite Imagery
Evaluating the Label Efficiency of Contrastive Self-Supervised Learning for Multi-Resolution Satellite Imagery
Jules Bourcier
G. Dashyan
Jocelyn Chanussot
Alahari Karteek
SSL
16
4
0
13 Oct 2022
SatMAE: Pre-training Transformers for Temporal and Multi-Spectral
  Satellite Imagery
SatMAE: Pre-training Transformers for Temporal and Multi-Spectral Satellite Imagery
Yezhen Cong
Samarth Khanna
Chenlin Meng
Patrick Liu
Erik Rozi
Yutong He
Marshall Burke
David B. Lobell
Stefano Ermon
ViT
17
249
0
17 Jul 2022
Self-supervised Learning in Remote Sensing: A Review
Self-supervised Learning in Remote Sensing: A Review
Yi Wang
C. Albrecht
Nassim Ait Ali Braham
Lichao Mou
Xiao Xiang Zhu
19
218
0
27 Jun 2022
Semantic-aware Dense Representation Learning for Remote Sensing Image
  Change Detection
Semantic-aware Dense Representation Learning for Remote Sensing Image Change Detection
Hao Chen
Wenyuan Li
Songhang Chen
Zhenwei Shi
23
38
0
27 May 2022
Land Cover Mapping in Limited Labels Scenario: A Survey
Land Cover Mapping in Limited Labels Scenario: A Survey
Rahul Ghosh
X. Jia
Vipin Kumar
26
6
0
03 Mar 2021
Towards DeepSentinel: An extensible corpus of labelled Sentinel-1 and -2
  imagery and a general-purpose sensor-fusion semantic embedding model
Towards DeepSentinel: An extensible corpus of labelled Sentinel-1 and -2 imagery and a general-purpose sensor-fusion semantic embedding model
L. Kruitwagen
SSL
20
3
0
11 Feb 2021
1