ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.05308
17
3

A Better Loss for Visual-Textual Grounding

11 August 2021
Davide Rigoni
Luciano Serafini
A. Sperduti
    ObjD
ArXivPDFHTML
Abstract

Given a textual phrase and an image, the visual grounding problem is the task of locating the content of the image referenced by the sentence. It is a challenging task that has several real-world applications in human-computer interaction, image-text reference resolution, and video-text reference resolution. In the last years, several works have addressed this problem by proposing more and more large and complex models that try to capture visual-textual dependencies better than before. These models are typically constituted by two main components that focus on how to learn useful multi-modal features for grounding and how to improve the predicted bounding box of the visual mention, respectively. Finding the right learning balance between these two sub-tasks is not easy, and the current models are not necessarily optimal with respect to this issue. In this work, we propose a loss function based on bounding boxes classes probabilities that: (i) improves the bounding boxes selection; (ii) improves the bounding boxes coordinates prediction. Our model, although using a simple multi-modal feature fusion component, is able to achieve a higher accuracy than state-of-the-art models on two widely adopted datasets, reaching a better learning balance between the two sub-tasks mentioned above.

View on arXiv
Comments on this paper