Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.07961
Cited By
Verifying Low-dimensional Input Neural Networks via Input Quantization
18 August 2021
Kai Jia
Martin Rinard
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Verifying Low-dimensional Input Neural Networks via Input Quantization"
9 / 9 papers shown
Title
Learning Verifiable Control Policies Using Relaxed Verification
Puja Chaudhury
Alexander Estornell
Michael Everett
27
0
0
23 Apr 2025
A Hybrid Partitioning Strategy for Backward Reachability of Neural Feedback Loops
Nicholas Rober
Michael Everett
Songan Zhang
Jonathan P. How
13
9
0
14 Oct 2022
Backward Reachability Analysis of Neural Feedback Loops: Techniques for Linear and Nonlinear Systems
Nicholas Rober
Sydney M. Katz
Chelsea Sidrane
Esen Yel
Michael Everett
Mykel J. Kochenderfer
Jonathan P. How
19
26
0
28 Sep 2022
A Scalable, Interpretable, Verifiable & Differentiable Logic Gate Convolutional Neural Network Architecture From Truth Tables
Adrien Benamira
Tristan Guérand
Thomas Peyrin
Trevor Yap
Bryan Hooi
16
1
0
18 Aug 2022
Backward Reachability Analysis for Neural Feedback Loops
Nicholas Rober
Michael Everett
Jonathan P. How
6
10
0
14 Apr 2022
Neural Network Compression of ACAS Xu Early Prototype is Unsafe: Closed-Loop Verification through Quantized State Backreachability
Stanley Bak
Hoang-Dung Tran
AAML
19
15
0
17 Jan 2022
Verifying Quantized Neural Networks using SMT-Based Model Checking
Luiz Sena
Xidan Song
E. Alves
I. Bessa
Edoardo Manino
Lucas C. Cordeiro
Eddie Batista de Lima Filho
20
11
0
10 Jun 2021
Exploiting Verified Neural Networks via Floating Point Numerical Error
Kai Jia
Martin Rinard
AAML
27
34
0
06 Mar 2020
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
222
1,818
0
03 Feb 2017
1