ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.07979
  4. Cited By
A New Bidirectional Unsupervised Domain Adaptation Segmentation
  Framework

A New Bidirectional Unsupervised Domain Adaptation Segmentation Framework

18 August 2021
Munan Ning
Cheng Bian
Dong Wei
Chenglang Yuan
Yaohua Wang
Yang Guo
Kai Ma
Yefeng Zheng
    OOD
ArXivPDFHTML

Papers citing "A New Bidirectional Unsupervised Domain Adaptation Segmentation Framework"

11 / 11 papers shown
Title
A2V: A Semi-Supervised Domain Adaptation Framework for Brain Vessel
  Segmentation via Two-Phase Training Angiography-to-Venography Translation
A2V: A Semi-Supervised Domain Adaptation Framework for Brain Vessel Segmentation via Two-Phase Training Angiography-to-Venography Translation
Francesco Galati
Daniele Falcetta
Rosa Cortese
Barbara Casolla
F. Prados
Ninon Burgos
Maria A. Zuluaga
23
3
0
12 Sep 2023
MI-SegNet: Mutual Information-Based US Segmentation for Unseen Domain
  Generalization
MI-SegNet: Mutual Information-Based US Segmentation for Unseen Domain Generalization
Yuanwei Bi
Zhongliang Jiang
Ricarda Clarenbach
R. Ghotbi
A. Karlas
Nassir Navab
21
20
0
22 Mar 2023
MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation
  Segmentation
MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation Segmentation
Munan Ning
Donghuan Lu
Yujia Xie
Dongdong Chen
Dong Wei
Yefeng Zheng
Yonghong Tian
Shuicheng Yan
Liuliang Yuan
22
9
0
18 Jan 2023
CDDSA: Contrastive Domain Disentanglement and Style Augmentation for
  Generalizable Medical Image Segmentation
CDDSA: Contrastive Domain Disentanglement and Style Augmentation for Generalizable Medical Image Segmentation
Ran Gu
Guotai Wang
Jiangshan Lu
Jingyang Zhang
Wenhui Lei
...
Wenjun Liao
Shichuan Zhang
Kang Li
Dimitris N. Metaxas
Shaoting Zhang
MedIm
24
29
0
22 Nov 2022
Deep Unsupervised Domain Adaptation: A Review of Recent Advances and
  Perspectives
Deep Unsupervised Domain Adaptation: A Review of Recent Advances and Perspectives
Xiaofeng Liu
Chaehwa Yoo
Fangxu Xing
Hyejin Oh
G. El Fakhri
Je-Won Kang
Jonghye Woo
OOD
31
191
0
15 Aug 2022
Promoting Saliency From Depth: Deep Unsupervised RGB-D Saliency
  Detection
Promoting Saliency From Depth: Deep Unsupervised RGB-D Saliency Detection
Wei Ji
Jingjing Li
Qi Bi
Chuan Guo
Jieyan Liu
Li Cheng
34
45
0
15 May 2022
Disentangling A Single MR Modality
Disentangling A Single MR Modality
Lianrui Zuo
Yihao Liu
Yuan Xue
Shuo Han
M. Bilgel
Susan M. Resnick
Jerry L. Prince
A. Carass
16
14
0
10 May 2022
Semantic-guided Disentangled Representation for Unsupervised
  Cross-modality Medical Image Segmentation
Semantic-guided Disentangled Representation for Unsupervised Cross-modality Medical Image Segmentation
Shuailong Wang
Rui Li
13
1
0
26 Mar 2022
Learning Disentangled Representations in the Imaging Domain
Learning Disentangled Representations in the Imaging Domain
Xiao Liu
Pedro Sanchez
Spyridon Thermos
Alison Q. OÑeil
Sotirios A. Tsaftaris
OOD
DRL
19
71
0
26 Aug 2021
Multi-Anchor Active Domain Adaptation for Semantic Segmentation
Multi-Anchor Active Domain Adaptation for Semantic Segmentation
Munan Ning
Donghuan Lu
Dong Wei
Cheng Bian
Chenglang Yuan
Shuang Yu
Kai Ma
Yefeng Zheng
9
53
0
18 Aug 2021
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
278
10,613
0
19 Feb 2017
1