ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.09518
  4. Cited By
MOTSynth: How Can Synthetic Data Help Pedestrian Detection and Tracking?

MOTSynth: How Can Synthetic Data Help Pedestrian Detection and Tracking?

21 August 2021
Matteo Fabbri
Guillem Brasó
Gianluca Maugeri
Orcun Cetintas
Riccardo Gasparini
Aljosa Osep
Simone Calderara
Laura Leal-Taixe
Rita Cucchiara
    ViT
ArXivPDFHTML

Papers citing "MOTSynth: How Can Synthetic Data Help Pedestrian Detection and Tracking?"

18 / 18 papers shown
Title
Improving Object Detection by Modifying Synthetic Data with Explainable AI
Improving Object Detection by Modifying Synthetic Data with Explainable AI
Nitish Mital
Simon Malzard
Richard Walters
Celso M. De Melo
Raghuveer Rao
Victoria Nockles
80
0
0
02 Dec 2024
MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark
MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark
Sanghyun Woo
Kwanyong Park
Inkyu Shin
Myungchul Kim
In So Kweon
36
0
0
29 Mar 2024
Multiple Object Tracking as ID Prediction
Multiple Object Tracking as ID Prediction
Ruopeng Gao
Yijun Zhang
Limin Wang
55
12
0
25 Mar 2024
Adaptive Human Trajectory Prediction via Latent Corridors
Adaptive Human Trajectory Prediction via Latent Corridors
Neerja Thakkar
K. Mangalam
Andrea V. Bajcsy
Jitendra Malik
22
4
0
11 Dec 2023
ParGANDA: Making Synthetic Pedestrians A Reality For Object Detection
ParGANDA: Making Synthetic Pedestrians A Reality For Object Detection
D. Reshetova
Guanhang Wu
Marcel Puyat
Chunhui Gu
Huizhong Chen
ViT
26
0
0
21 Jul 2023
Diffusion Dataset Generation: Towards Closing the Sim2Real Gap for
  Pedestrian Detection
Diffusion Dataset Generation: Towards Closing the Sim2Real Gap for Pedestrian Detection
A. Farley
Mohsen Zand
Michael A. Greenspan
DiffM
21
1
0
16 May 2023
Bent & Broken Bicycles: Leveraging synthetic data for damaged object
  re-identification
Bent & Broken Bicycles: Leveraging synthetic data for damaged object re-identification
Luca Piano
F. G. Pratticó
Alessandro Sebastian Russo
Lorenzo Lanari
Lia Morra
Fabrizio Lamberti
34
1
0
16 Apr 2023
SDTracker: Synthetic Data Based Multi-Object Tracking
SDTracker: Synthetic Data Based Multi-Object Tracking
Yingda Guan
Zhengyang Feng
Huiying Chang
Kuo Du
Tingting Li
Min Wang
26
0
0
26 Mar 2023
Dynamic Storyboard Generation in an Engine-based Virtual Environment for
  Video Production
Dynamic Storyboard Generation in an Engine-based Virtual Environment for Video Production
Anyi Rao
Xuekun Jiang
Yuwei Guo
Linning Xu
Lei Yang
Libiao Jin
Dahua Lin
Bo Dai
VGen
23
15
0
30 Jan 2023
Large Scale Real-World Multi-Person Tracking
Large Scale Real-World Multi-Person Tracking
Bing Shuai
Alessandro Bergamo
Uta Buechler
Andrew G. Berneshawi
Alyssa Boden
Joseph Tighe
18
13
0
03 Nov 2022
Multiple Object Tracking in Recent Times: A Literature Review
Multiple Object Tracking in Recent Times: A Literature Review
Mk Bashar
Samia Islam
Kashifa Kawaakib Hussain
Md. Bakhtiar Hasan
A. A. Ashikur Rahman
M. H. Kabir
VOT
38
23
0
11 Sep 2022
Synthetic Dataset Generation for Adversarial Machine Learning Research
Synthetic Dataset Generation for Adversarial Machine Learning Research
Xiruo Liu
Shibani Singh
Cory Cornelius
Colin Busho
Mike Tan
Anindya Paul
Jason Martin
AAML
28
2
0
21 Jul 2022
MOTCOM: The Multi-Object Tracking Dataset Complexity Metric
MOTCOM: The Multi-Object Tracking Dataset Complexity Metric
Malte Pedersen
Joakim Bruslund Haurum
Patrick Dendorfer
T. Moeslund
VOT
23
1
0
20 Jul 2022
People Tracking and Re-Identifying in Distributed Contexts: Extension
  Study of PoseTReID
People Tracking and Re-Identifying in Distributed Contexts: Extension Study of PoseTReID
Ratha Siv
M. Mancas
B. Gosselin
Dona Valy
Sokchenda Sreng
VOT
21
0
0
20 May 2022
Panoptic Segmentation using Synthetic and Real Data
Panoptic Segmentation using Synthetic and Real Data
Camillo Quattrocchi
Daniele Di Mauro
Antonino Furnari
G. Farinella
28
2
0
14 Apr 2022
Less is More: Learning from Synthetic Data with Fine-grained Attributes
  for Person Re-Identification
Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification
Suncheng Xiang
Dahong Qian
Mengyuan Guan
Binghai Yan
Guanjie You
Ting Liu
Yuzhuo Fu
AI4TS
26
31
0
22 Sep 2021
MOT20: A benchmark for multi object tracking in crowded scenes
MOT20: A benchmark for multi object tracking in crowded scenes
Patrick Dendorfer
Hamid Rezatofighi
Anton Milan
Javen Qinfeng Shi
Daniel Cremers
Ian Reid
Stefan Roth
Konrad Schindler
Laura Leal-Taixé
VOT
179
632
0
19 Mar 2020
CrowdHuman: A Benchmark for Detecting Human in a Crowd
CrowdHuman: A Benchmark for Detecting Human in a Crowd
Shuai Shao
Zijian Zhao
Boxun Li
Tete Xiao
Gang Yu
Xiangyu Zhang
Jian-jun Sun
222
675
0
30 Apr 2018
1