Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.09518
Cited By
MOTSynth: How Can Synthetic Data Help Pedestrian Detection and Tracking?
21 August 2021
Matteo Fabbri
Guillem Brasó
Gianluca Maugeri
Orcun Cetintas
Riccardo Gasparini
Aljosa Osep
Simone Calderara
Laura Leal-Taixe
Rita Cucchiara
ViT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"MOTSynth: How Can Synthetic Data Help Pedestrian Detection and Tracking?"
18 / 18 papers shown
Title
Improving Object Detection by Modifying Synthetic Data with Explainable AI
Nitish Mital
Simon Malzard
Richard Walters
Celso M. De Melo
Raghuveer Rao
Victoria Nockles
80
0
0
02 Dec 2024
MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark
Sanghyun Woo
Kwanyong Park
Inkyu Shin
Myungchul Kim
In So Kweon
36
0
0
29 Mar 2024
Multiple Object Tracking as ID Prediction
Ruopeng Gao
Yijun Zhang
Limin Wang
55
12
0
25 Mar 2024
Adaptive Human Trajectory Prediction via Latent Corridors
Neerja Thakkar
K. Mangalam
Andrea V. Bajcsy
Jitendra Malik
22
4
0
11 Dec 2023
ParGANDA: Making Synthetic Pedestrians A Reality For Object Detection
D. Reshetova
Guanhang Wu
Marcel Puyat
Chunhui Gu
Huizhong Chen
ViT
26
0
0
21 Jul 2023
Diffusion Dataset Generation: Towards Closing the Sim2Real Gap for Pedestrian Detection
A. Farley
Mohsen Zand
Michael A. Greenspan
DiffM
21
1
0
16 May 2023
Bent & Broken Bicycles: Leveraging synthetic data for damaged object re-identification
Luca Piano
F. G. Pratticó
Alessandro Sebastian Russo
Lorenzo Lanari
Lia Morra
Fabrizio Lamberti
34
1
0
16 Apr 2023
SDTracker: Synthetic Data Based Multi-Object Tracking
Yingda Guan
Zhengyang Feng
Huiying Chang
Kuo Du
Tingting Li
Min Wang
26
0
0
26 Mar 2023
Dynamic Storyboard Generation in an Engine-based Virtual Environment for Video Production
Anyi Rao
Xuekun Jiang
Yuwei Guo
Linning Xu
Lei Yang
Libiao Jin
Dahua Lin
Bo Dai
VGen
23
15
0
30 Jan 2023
Large Scale Real-World Multi-Person Tracking
Bing Shuai
Alessandro Bergamo
Uta Buechler
Andrew G. Berneshawi
Alyssa Boden
Joseph Tighe
18
13
0
03 Nov 2022
Multiple Object Tracking in Recent Times: A Literature Review
Mk Bashar
Samia Islam
Kashifa Kawaakib Hussain
Md. Bakhtiar Hasan
A. A. Ashikur Rahman
M. H. Kabir
VOT
38
23
0
11 Sep 2022
Synthetic Dataset Generation for Adversarial Machine Learning Research
Xiruo Liu
Shibani Singh
Cory Cornelius
Colin Busho
Mike Tan
Anindya Paul
Jason Martin
AAML
28
2
0
21 Jul 2022
MOTCOM: The Multi-Object Tracking Dataset Complexity Metric
Malte Pedersen
Joakim Bruslund Haurum
Patrick Dendorfer
T. Moeslund
VOT
23
1
0
20 Jul 2022
People Tracking and Re-Identifying in Distributed Contexts: Extension Study of PoseTReID
Ratha Siv
M. Mancas
B. Gosselin
Dona Valy
Sokchenda Sreng
VOT
21
0
0
20 May 2022
Panoptic Segmentation using Synthetic and Real Data
Camillo Quattrocchi
Daniele Di Mauro
Antonino Furnari
G. Farinella
28
2
0
14 Apr 2022
Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification
Suncheng Xiang
Dahong Qian
Mengyuan Guan
Binghai Yan
Guanjie You
Ting Liu
Yuzhuo Fu
AI4TS
26
31
0
22 Sep 2021
MOT20: A benchmark for multi object tracking in crowded scenes
Patrick Dendorfer
Hamid Rezatofighi
Anton Milan
Javen Qinfeng Shi
Daniel Cremers
Ian Reid
Stefan Roth
Konrad Schindler
Laura Leal-Taixé
VOT
179
632
0
19 Mar 2020
CrowdHuman: A Benchmark for Detecting Human in a Crowd
Shuai Shao
Zijian Zhao
Boxun Li
Tete Xiao
Gang Yu
Xiangyu Zhang
Jian-jun Sun
222
675
0
30 Apr 2018
1