ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.10860
  4. Cited By
Tune it the Right Way: Unsupervised Validation of Domain Adaptation via
  Soft Neighborhood Density

Tune it the Right Way: Unsupervised Validation of Domain Adaptation via Soft Neighborhood Density

24 August 2021
Kuniaki Saito
Donghyun Kim
Piotr Teterwak
Stan Sclaroff
Trevor Darrell
Kate Saenko
ArXivPDFHTML

Papers citing "Tune it the Right Way: Unsupervised Validation of Domain Adaptation via Soft Neighborhood Density"

8 / 8 papers shown
Title
SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation On Diverse Modalities
SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation On Diverse Modalities
Yanis Lalou
Théo Gnassounou
Antoine Collas
Antoine de Mathelin
Oleksii Kachaiev
Ambroise Odonnat
Alexandre Gramfort
Thomas Moreau
Rémi Flamary
87
0
0
16 Jul 2024
IW-GAE: Importance Weighted Group Accuracy Estimation for Improved
  Calibration and Model Selection in Unsupervised Domain Adaptation
IW-GAE: Importance Weighted Group Accuracy Estimation for Improved Calibration and Model Selection in Unsupervised Domain Adaptation
Taejong Joo
Diego Klabjan
33
1
0
16 Oct 2023
Semantic Image Segmentation: Two Decades of Research
Semantic Image Segmentation: Two Decades of Research
G. Csurka
Riccardo Volpi
Boris Chidlovskii
3DV
26
50
0
13 Feb 2023
360-MLC: Multi-view Layout Consistency for Self-training and
  Hyper-parameter Tuning
360-MLC: Multi-view Layout Consistency for Self-training and Hyper-parameter Tuning
Bolivar Solarte
Chin-Hsuan Wu
Yueh-Cheng Liu
Yi-Hsuan Tsai
Min Sun
3DV
23
5
0
24 Oct 2022
Rethinking Unsupervised Domain Adaptation for Semantic Segmentation
Rethinking Unsupervised Domain Adaptation for Semantic Segmentation
Zhijie Wang
Masanori Suganuma
Takayuki Okatani
OOD
19
2
0
30 Jun 2022
Attracting and Dispersing: A Simple Approach for Source-free Domain
  Adaptation
Attracting and Dispersing: A Simple Approach for Source-free Domain Adaptation
Shiqi Yang
Yaxing Wang
Kai Wang
Shangling Jui
Joost van de Weijer
24
131
0
09 May 2022
UMAD: Universal Model Adaptation under Domain and Category Shift
UMAD: Universal Model Adaptation under Domain and Category Shift
Jian Liang
Dapeng Hu
Jiashi Feng
R. He
26
30
0
16 Dec 2021
Confidence Regularized Self-Training
Confidence Regularized Self-Training
Yang Zou
Zhiding Yu
Xiaofeng Liu
B. Kumar
Jinsong Wang
230
789
0
26 Aug 2019
1