Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2108.13320
Cited By
Neural HMMs are all you need (for high-quality attention-free TTS)
30 August 2021
Shivam Mehta
Éva Székely
Jonas Beskow
G. Henter
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural HMMs are all you need (for high-quality attention-free TTS)"
11 / 11 papers shown
Title
Source Tracing of Audio Deepfake Systems
Nicholas Klein
Tianxiang Chen
Hemlata Tak
Ricardo Casal
Elie Khoury
32
4
0
10 Jul 2024
Should you use a probabilistic duration model in TTS? Probably! Especially for spontaneous speech
Shivam Mehta
Harm Lameris
Rajiv Punmiya
Jonas Beskow
Éva Székely
G. Henter
23
1
0
08 Jun 2024
Fake it to make it: Using synthetic data to remedy the data shortage in joint multimodal speech-and-gesture synthesis
Shivam Mehta
Anna Deichler
Jim O'Regan
Birger Moëll
Jonas Beskow
G. Henter
Simon Alexanderson
46
4
0
30 Apr 2024
Pyramidal Hidden Markov Model For Multivariate Time Series Forecasting
YeXin Huang
AI4TS
25
0
0
22 Oct 2023
Matcha-TTS: A fast TTS architecture with conditional flow matching
Shivam Mehta
Ruibo Tu
Jonas Beskow
Éva Székely
G. Henter
16
69
0
06 Sep 2023
Diff-TTSG: Denoising probabilistic integrated speech and gesture synthesis
Shivam Mehta
Siyang Wang
Simon Alexanderson
Jonas Beskow
Éva Székely
G. Henter
DiffM
26
14
0
15 Jun 2023
Prosody-controllable spontaneous TTS with neural HMMs
Harm Lameris
Shivam Mehta
G. Henter
Joakim Gustafson
Éva Székely
33
15
0
24 Nov 2022
OverFlow: Putting flows on top of neural transducers for better TTS
Shivam Mehta
Ambika Kirkland
Harm Lameris
Jonas Beskow
Éva Székely
G. Henter
AI4TS
32
12
0
13 Nov 2022
The Importance of Accurate Alignments in End-to-End Speech Synthesis
Anusha Prakash
H. Murthy
21
4
0
31 Oct 2022
R-MelNet: Reduced Mel-Spectral Modeling for Neural TTS
Kyle Kastner
Aaron Courville
27
0
0
30 Jun 2022
End-to-End Text-to-Speech using Latent Duration based on VQ-VAE
Yusuke Yasuda
Xin Wang
Junichi Yamagishi
13
16
0
19 Oct 2020
1