ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.13993
  4. Cited By
Designing Rotationally Invariant Neural Networks from PDEs and
  Variational Methods

Designing Rotationally Invariant Neural Networks from PDEs and Variational Methods

31 August 2021
Tobias Alt
Karl Schrader
Joachim Weickert
Pascal Peter
M. Augustin
ArXivPDFHTML

Papers citing "Designing Rotationally Invariant Neural Networks from PDEs and Variational Methods"

4 / 4 papers shown
Title
Benefits of mirror weight symmetry for 3D mesh segmentation in
  biomedical applications
Benefits of mirror weight symmetry for 3D mesh segmentation in biomedical applications
Asif Abdullah Rokoni
Maksim Dzhigil
Martin Kasparick
3DH
19
0
0
29 Sep 2023
Anisotropic Diffusion Stencils: From Simple Derivations over Stability
  Estimates to ResNet Implementations
Anisotropic Diffusion Stencils: From Simple Derivations over Stability Estimates to ResNet Implementations
Karl Schrader
Joachim Weickert
Michael Krause
DiffM
11
0
0
11 Sep 2023
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
294
10,216
0
16 Nov 2016
Image Denoising via Multi-scale Nonlinear Diffusion Models
Image Denoising via Multi-scale Nonlinear Diffusion Models
Wensen Feng
Peng Qiao
Xuanyang Xi
Yunjin Chen
DiffM
19
5
0
21 Sep 2016
1