ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.13996
  4. Cited By
Quantization of Generative Adversarial Networks for Efficient Inference:
  a Methodological Study

Quantization of Generative Adversarial Networks for Efficient Inference: a Methodological Study

31 August 2021
Pavel Andreev
Alexander Fritzler
Dmitry Vetrov
    MQ
ArXivPDFHTML

Papers citing "Quantization of Generative Adversarial Networks for Efficient Inference: a Methodological Study"

4 / 4 papers shown
Title
A Unified Compression Framework for Efficient Speech-Driven Talking-Face
  Generation
A Unified Compression Framework for Efficient Speech-Driven Talking-Face Generation
Bo-Kyeong Kim
Jaemin Kang
Daeun Seo
Hancheol Park
Shinkook Choi
Hyoung-Kyu Song
Hyungshin Kim
Sungsu Lim
19
0
0
02 Apr 2023
Cut Inner Layers: A Structured Pruning Strategy for Efficient U-Net GANs
Cut Inner Layers: A Structured Pruning Strategy for Efficient U-Net GANs
Bo-Kyeong Kim
Shinkook Choi
Hancheol Park
13
4
0
29 Jun 2022
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
279
10,348
0
12 Dec 2018
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,561
0
17 Apr 2017
1