ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.00869
  4. Cited By
Assessing domain adaptation techniques for mitosis detection in
  multi-scanner breast cancer histopathology images
v1v2v3 (latest)

Assessing domain adaptation techniques for mitosis detection in multi-scanner breast cancer histopathology images

1 September 2021
Jack Breen
K. Zucker
Nicolas M. Orsi
Nishant Ravikumar
ArXiv (abs)PDFHTML

Papers citing "Assessing domain adaptation techniques for mitosis detection in multi-scanner breast cancer histopathology images"

4 / 4 papers shown
Title
Synthetic DOmain-Targeted Augmentation (S-DOTA) Improves Model
  Generalization in Digital Pathology
Synthetic DOmain-Targeted Augmentation (S-DOTA) Improves Model Generalization in Digital Pathology
Sai Chowdary Gullapally
Yibo Jacky Zhang
Nitin Mittal
Deeksha Kartik
Sandhya Srinivasan
...
Chintan Shah
J. Abel
D. Fahy
A. Taylor-Weiner
Anand Sampat
105
9
0
03 May 2023
Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future
  Directions
Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions
Luyang Luo
Xi Wang
Yi Lin
Xiaoqi Ma
Andong Tan
R. Chan
V. Vardhanabhuti
W. C. Chu
Kwang-Ting Cheng
Hao Chen
108
60
0
13 Apr 2023
Improving Mitosis Detection Via UNet-based Adversarial Domain
  Homogenizer
Improving Mitosis Detection Via UNet-based Adversarial Domain Homogenizer
Tirupati Saketh Chandra
Sahar Almahfouz Nasser
Nikhil Cherian Kurian
A. Sethi
MedIm
46
0
0
15 Sep 2022
Mitosis domain generalization in histopathology images -- The MIDOG
  challenge
Mitosis domain generalization in histopathology images -- The MIDOG challenge
Marc Aubreville
N. Stathonikos
C. Bertram
Robert Klopleisch
N. T. ter Hoeve
...
A. Khademi
Sen Yang
Xiyue Wang
M. Veta
Katharina Breininger
88
99
0
06 Apr 2022
1