ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.02413
  4. Cited By
A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation

A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation

6 September 2021
Richard Shaw
Carole H. Sudre
Sebastien Ourselin
M. Jorge Cardoso
H. Pemberton
    UQCV
ArXivPDFHTML

Papers citing "A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation"

5 / 5 papers shown
Title
Automated MRI Quality Assessment of Brain T1-weighted MRI in Clinical
  Data Warehouses: A Transfer Learning Approach Relying on Artefact Simulation
Automated MRI Quality Assessment of Brain T1-weighted MRI in Clinical Data Warehouses: A Transfer Learning Approach Relying on Artefact Simulation
Sophie Loizillon
Simona Bottani
Stéphane Mabille
Yannick Jacob
Aurélien Maire
Sebastian Ströer
Didier Dormont
O. Colliot
Ninon Burgos
27
2
0
18 Jun 2024
Trustworthy clinical AI solutions: a unified review of uncertainty
  quantification in deep learning models for medical image analysis
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
24
76
0
05 Oct 2022
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in
  Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking
  Results
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
Raghav Mehta
Angelos Filos
Ujjwal Baid
C. Sako
Richard McKinley
...
Christos Davatzikos
Bjoern H. Menze
Spyridon Bakas
Y. Gal
Tal Arbel
UQCV
17
44
0
19 Dec 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
270
5,660
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
282
9,136
0
06 Jun 2015
1