ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.02533
11
8

Neural Ensemble Search via Bayesian Sampling

6 September 2021
Yao Shu
Yizhou Chen
Zhongxiang Dai
Bryan Kian Hsiang Low
    BDL
ArXivPDFHTML
Abstract

Recently, neural architecture search (NAS) has been applied to automate the design of neural networks in real-world applications. A large number of algorithms have been developed to improve the search cost or the performance of the final selected architectures in NAS. Unfortunately, these NAS algorithms aim to select only one single well-performing architecture from their search spaces and thus have overlooked the capability of neural network ensemble (i.e., an ensemble of neural networks with diverse architectures) in achieving improved performance over a single final selected architecture. To this end, we introduce a novel neural ensemble search algorithm, called neural ensemble search via Bayesian sampling (NESBS), to effectively and efficiently select well-performing neural network ensembles from a NAS search space. In our extensive experiments, NESBS algorithm is shown to be able to achieve improved performance over state-of-the-art NAS algorithms while incurring a comparable search cost, thus indicating the superior performance of our NESBS algorithm over these NAS algorithms in practice.

View on arXiv
Comments on this paper