Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.02555
Cited By
GPT-3 Models are Poor Few-Shot Learners in the Biomedical Domain
6 September 2021
M. Moradi
Kathrin Blagec
F. Haberl
Matthias Samwald
LM&MA
AI4MH
Re-assign community
ArXiv
PDF
HTML
Papers citing
"GPT-3 Models are Poor Few-Shot Learners in the Biomedical Domain"
6 / 6 papers shown
Title
Good Data, Large Data, or No Data? Comparing Three Approaches in Developing Research Aspect Classifiers for Biomedical Papers
S. Chandrasekhar
Huang Chieh-Yang
Ting-Hao 'Kenneth' Huang
11
2
0
07 Jun 2023
SikuGPT: A Generative Pre-trained Model for Intelligent Information Processing of Ancient Texts from the Perspective of Digital Humanities
Chang Liu
Dongbo Wang
Zhixiao Zhao
Die Hu
Mengcheng Wu
...
Si Shen
Bin Li
Jiangfeng Liu
Hai Zhang
Lianzheng Zhao
4
9
0
16 Apr 2023
BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining
Renqian Luo
Liai Sun
Yingce Xia
Tao Qin
Sheng Zhang
Hoifung Poon
Tie-Yan Liu
MedIm
AI4CE
LM&MA
8
780
0
19 Oct 2022
Clinical Prompt Learning with Frozen Language Models
Niall Taylor
Yi Zhang
Dan W Joyce
A. Nevado-Holgado
Andrey Kormilitzin
VLM
LM&MA
11
31
0
11 May 2022
Clinical XLNet: Modeling Sequential Clinical Notes and Predicting Prolonged Mechanical Ventilation
Kexin Huang
Abhishek Singh
Sitong Chen
E. Moseley
Chih-ying Deng
Naomi George
C. Lindvall
56
57
0
27 Dec 2019
PubMedQA: A Dataset for Biomedical Research Question Answering
Qiao Jin
Bhuwan Dhingra
Zhengping Liu
William W. Cohen
Xinghua Lu
196
791
0
13 Sep 2019
1