ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.04645
  4. Cited By
CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
  Dialog Systems

CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented Dialog Systems

10 September 2021
Fei Mi
Yitong Li
Yasheng Wang
Xin Jiang
Qun Liu
ArXivPDFHTML

Papers citing "CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented Dialog Systems"

12 / 12 papers shown
Title
Zero-Shot Generalizable End-to-End Task-Oriented Dialog System using
  Context Summarization and Domain Schema
Zero-Shot Generalizable End-to-End Task-Oriented Dialog System using Context Summarization and Domain Schema
A. Mosharrof
M. H. Maqbool
A. B. Siddique
VLM
24
4
0
28 Mar 2023
Dialogue State Distillation Network with Inter-slot Contrastive Learning
  for Dialogue State Tracking
Dialogue State Distillation Network with Inter-slot Contrastive Learning for Dialogue State Tracking
Jing Xu
Dandan Song
Chong Liu
Siu Cheung Hui
Fei Li
Qiang Ju
Xiaonan He
Jian Xie
19
5
0
16 Feb 2023
AnyTOD: A Programmable Task-Oriented Dialog System
AnyTOD: A Programmable Task-Oriented Dialog System
Jeffrey Zhao
Yuan Cao
Raghav Gupta
Harrison Lee
Abhinav Rastogi
Mingqiu Wang
H. Soltau
Izhak Shafran
Yonghui Wu
VLM
18
9
0
20 Dec 2022
ConvLab-3: A Flexible Dialogue System Toolkit Based on a Unified Data
  Format
ConvLab-3: A Flexible Dialogue System Toolkit Based on a Unified Data Format
Qi Zhu
Christian Geishauser
Hsien-Chin Lin
Carel van Niekerk
Baolin Peng
...
Dazhen Wan
Xiaochen Zhu
Jianfeng Gao
Milica Gavsić
Minlie Huang
43
23
0
30 Nov 2022
Understanding BLOOM: An empirical study on diverse NLP tasks
Understanding BLOOM: An empirical study on diverse NLP tasks
Parag Dakle
Sai Krishna Rallabandi
Preethi Raghavan
AI4CE
31
3
0
27 Nov 2022
InstructDial: Improving Zero and Few-shot Generalization in Dialogue
  through Instruction Tuning
InstructDial: Improving Zero and Few-shot Generalization in Dialogue through Instruction Tuning
Prakhar Gupta
Cathy Jiao
Yi-Ting Yeh
Shikib Mehri
M. Eskénazi
Jeffrey P. Bigham
ALM
36
47
0
25 May 2022
Continual Prompt Tuning for Dialog State Tracking
Continual Prompt Tuning for Dialog State Tracking
Qi Zhu
Bing Li
Fei Mi
Xiaoyan Zhu
Minlie Huang
CLL
KELM
30
57
0
13 Mar 2022
Exploring Prompt-based Few-shot Learning for Grounded Dialog Generation
Exploring Prompt-based Few-shot Learning for Grounded Dialog Generation
Chujie Zheng
Minlie Huang
51
44
0
14 Sep 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
280
3,843
0
18 Apr 2021
What Makes Good In-Context Examples for GPT-$3$?
What Makes Good In-Context Examples for GPT-333?
Jiachang Liu
Dinghan Shen
Yizhe Zhang
Bill Dolan
Lawrence Carin
Weizhu Chen
AAML
RALM
275
1,312
0
17 Jan 2021
Making Pre-trained Language Models Better Few-shot Learners
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
241
1,916
0
31 Dec 2020
Exploiting Cloze Questions for Few Shot Text Classification and Natural
  Language Inference
Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
Timo Schick
Hinrich Schütze
258
1,586
0
21 Jan 2020
1