ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.05265
202
11
v1v2v3v4 (latest)

Advancing Autonomous Driving: DepthSense with Radar and Spatial Attention

IEEE Sensors Journal (IEEE Sens. J.), 2021
11 September 2021
Muhamamd Ishfaq Hussain
Zubia Naz
M. Rafique
M. Jeon
    MDE
ArXiv (abs)PDFHTMLGithub (15★)
Main:8 Pages
7 Figures
Bibliography:2 Pages
1 Tables
Appendix:1 Pages
Abstract

Depth perception is crucial for spatial understanding and has traditionally been achieved through stereoscopic imaging. However, the precision of depth estimation using stereoscopic methods depends on the accurate calibration of binocular vision sensors. Monocular cameras, while more accessible, often suffer from reduced accuracy, especially under challenging imaging conditions. Optical sensors, too, face limitations in adverse environments, leading researchers to explore radar technology as a reliable alternative. Although radar provides coarse but accurate signals, its integration with fine-grained monocular camera data remains underexplored. In this research, we propose DepthSense, a novel radar-assisted monocular depth enhancement approach. DepthSense employs an encoder-decoder architecture, a Radar Residual Network, feature fusion with a spatial attention mechanism, and an ordinal regression layer to deliver precise depth estimations. We conducted extensive experiments on the nuScenes dataset to validate the effectiveness of DepthSense. Our methodology not only surpasses existing approaches in quantitative performance but also reduces parameter complexity and inference times. Our findings demonstrate that DepthSense represents a significant advancement over traditional stereo methods, offering a robust and efficient solution for depth estimation in autonomous driving. By leveraging the complementary strengths of radar and monocular camera data, DepthSense sets a new benchmark in the field, paving the way for more reliable and accurate spatial perception systems.

View on arXiv
Comments on this paper