ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.05641
  4. Cited By
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node
  Classification?

Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?

12 September 2021
Sitao Luan
Chenqing Hua
Qincheng Lu
Jiaqi Zhu
Mingde Zhao
Shuyuan Zhang
Xiaoming Chang
Doina Precup
ArXivPDFHTML

Papers citing "Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?"

15 / 15 papers shown
Title
Efficient Learning on Large Graphs using a Densifying Regularity Lemma
Efficient Learning on Large Graphs using a Densifying Regularity Lemma
Jonathan Kouchly
Ben Finkelshtein
M. Bronstein
Ron Levie
39
0
0
25 Apr 2025
FlashVideo: Flowing Fidelity to Detail for Efficient High-Resolution Video Generation
FlashVideo: Flowing Fidelity to Detail for Efficient High-Resolution Video Generation
Shilong Zhang
Wenbo Li
Shoufa Chen
Chongjian Ge
Peize Sun
Y. Zhang
Yi-Xin Jiang
Zehuan Yuan
Binyue Peng
Ping Luo
DiffM
VGen
92
0
0
07 Feb 2025
THeGCN: Temporal Heterophilic Graph Convolutional Network
THeGCN: Temporal Heterophilic Graph Convolutional Network
Yuchen Yan
Yuzhong Chen
Huiyuan Chen
Xiaoting Li
Zhe Xu
Zhichen Zeng
Lihui Liu
Zhining Liu
Hanghang Tong
82
0
0
21 Dec 2024
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts
Jinluan Yang
Zhengyu Chen
Teng Xiao
Wenqiao Zhang
Yong Lin
Kun Kuang
51
0
0
18 Aug 2024
Simplified PCNet with Robustness
Simplified PCNet with Robustness
Bingheng Li
Xuanting Xie
Haoxiang Lei
Ruiyi Fang
Zhao Kang
22
4
0
06 Mar 2024
Efficient and Explainable Graph Neural Architecture Search via
  Monte-Carlo Tree Search
Efficient and Explainable Graph Neural Architecture Search via Monte-Carlo Tree Search
Yuya Sasaki
25
0
0
30 Aug 2023
On Performance Discrepancies Across Local Homophily Levels in Graph
  Neural Networks
On Performance Discrepancies Across Local Homophily Levels in Graph Neural Networks
Donald Loveland
Jiong Zhu
Mark Heimann
Benjamin Fish
Michael T. Shaub
Danai Koutra
23
5
0
08 Jun 2023
Ordered GNN: Ordering Message Passing to Deal with Heterophily and
  Over-smoothing
Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing
Yunchong Song
Cheng Zhou
Xinbing Wang
Zhouhan Lin
16
61
0
03 Feb 2023
Clenshaw Graph Neural Networks
Clenshaw Graph Neural Networks
Y. Guo
Zhewei Wei
GNN
48
10
0
29 Oct 2022
Characterizing Graph Datasets for Node Classification:
  Homophily-Heterophily Dichotomy and Beyond
Characterizing Graph Datasets for Node Classification: Homophily-Heterophily Dichotomy and Beyond
Oleg Platonov
Denis Kuznedelev
Artem Babenko
Liudmila Prokhorenkova
51
37
0
13 Sep 2022
Finding Global Homophily in Graph Neural Networks When Meeting
  Heterophily
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
Xiang Li
Renyu Zhu
Yao Cheng
Caihua Shan
Siqiang Luo
Dongsheng Li
Wei Qian
13
181
0
15 May 2022
Beyond Low-frequency Information in Graph Convolutional Networks
Beyond Low-frequency Information in Graph Convolutional Networks
Deyu Bo
Xiao Wang
C. Shi
Huawei Shen
GNN
87
554
0
04 Jan 2021
Geom-GCN: Geometric Graph Convolutional Networks
Geom-GCN: Geometric Graph Convolutional Networks
Hongbin Pei
Bingzhen Wei
Kevin Chen-Chuan Chang
Yu Lei
Bo Yang
GNN
167
1,058
0
13 Feb 2020
Representation Learning on Graphs with Jumping Knowledge Networks
Representation Learning on Graphs with Jumping Knowledge Networks
Keyulu Xu
Chengtao Li
Yonglong Tian
Tomohiro Sonobe
Ken-ichi Kawarabayashi
Stefanie Jegelka
GNN
226
1,935
0
09 Jun 2018
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
1