ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.05829
  4. Cited By
Zeroth-order non-convex learning via hierarchical dual averaging

Zeroth-order non-convex learning via hierarchical dual averaging

13 September 2021
Amélie Héliou
Matthieu Martin
P. Mertikopoulos
Thibaud Rahier
ArXiv (abs)PDFHTML

Papers citing "Zeroth-order non-convex learning via hierarchical dual averaging"

7 / 7 papers shown
Title
How to Boost Any Loss Function
How to Boost Any Loss Function
Richard Nock
Yishay Mansour
62
0
0
02 Jul 2024
Non-Convex Bilevel Optimization with Time-Varying Objective Functions
Non-Convex Bilevel Optimization with Time-Varying Objective Functions
Sen-Fon Lin
Daouda Sow
Kaiyi Ji
Yitao Liang
Ness B. Shroff
80
4
0
07 Aug 2023
Online Bilevel Optimization: Regret Analysis of Online Alternating
  Gradient Methods
Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods
Davoud Ataee Tarzanagh
Parvin Nazari
Bojian Hou
Li Shen
Laura Balzano
148
12
0
06 Jul 2022
Nested bandits
Nested bandits
Matthieu Martin
P. Mertikopoulos
Thibaud Rahier
Houssam Zenati
34
2
0
19 Jun 2022
Gradient and Projection Free Distributed Online Min-Max Resource
  Optimization
Gradient and Projection Free Distributed Online Min-Max Resource Optimization
Jingrong Wang
Ben Liang
51
3
0
07 Dec 2021
Adaptive first-order methods revisited: Convex optimization without
  Lipschitz requirements
Adaptive first-order methods revisited: Convex optimization without Lipschitz requirements
Kimon Antonakopoulos
P. Mertikopoulos
59
12
0
16 Jul 2021
Regret minimization in stochastic non-convex learning via a
  proximal-gradient approach
Regret minimization in stochastic non-convex learning via a proximal-gradient approach
Nadav Hallak
P. Mertikopoulos
Volkan Cevher
64
21
0
13 Oct 2020
1