Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2109.09569
Cited By
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
20 September 2021
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments"
9 / 9 papers shown
Title
Breaking scaling relations with inverse catalysts: a machine learning exploration of trends in
C
O
2
\mathrm{CO_2}
C
O
2
hydrogenation energy barriers
Luuk H. E. Kempen
Marius Juul Nielsen
Mie Andersen
23
0
0
23 Apr 2025
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Makoto Takamoto
Viktor Zaverkin
Mathias Niepert
AI4CE
60
0
0
23 Jul 2024
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing
Viktor Zaverkin
Francesco Alesiani
Takashi Maruyama
Federico Errica
Henrik Christiansen
Makoto Takamoto
Nicolas Weber
Mathias Niepert
46
5
0
23 May 2024
Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
Viktor Zaverkin
David Holzmüller
Henrik Christiansen
Federico Errica
Francesco Alesiani
Makoto Takamoto
Mathias Niepert
Johannes Kastner
AI4CE
29
13
0
03 Dec 2023
Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments
Viktor Zaverkin
Julia Netz
Fabian Zills
Andreas Köhn
Johannes Kastner
AI4CE
22
16
0
03 Dec 2023
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
25
15
0
03 Dec 2023
Evaluation of the MACE Force Field Architecture: from Medicinal Chemistry to Materials Science
D. P. Kovács
Ilyes Batatia
E. Arany
Gábor Csányi
AI4CE
24
82
0
23 May 2023
Transfer learning for chemically accurate interatomic neural network potentials
Viktor Zaverkin
David Holzmüller
Luca Bonfirraro
Johannes Kastner
23
24
0
07 Dec 2022
Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials
Viktor Zaverkin
Johannes Kastner
34
67
0
15 Sep 2021
1