ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.09569
  4. Cited By
Fast and Sample-Efficient Interatomic Neural Network Potentials for
  Molecules and Materials Based on Gaussian Moments

Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments

20 September 2021
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
ArXivPDFHTML

Papers citing "Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments"

9 / 9 papers shown
Title
Breaking scaling relations with inverse catalysts: a machine learning exploration of trends in $\mathrm{CO_2}$ hydrogenation energy barriers
Breaking scaling relations with inverse catalysts: a machine learning exploration of trends in CO2\mathrm{CO_2}CO2​ hydrogenation energy barriers
Luuk H. E. Kempen
Marius Juul Nielsen
Mie Andersen
23
0
0
23 Apr 2025
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Makoto Takamoto
Viktor Zaverkin
Mathias Niepert
AI4CE
60
0
0
23 Jul 2024
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message
  Passing
Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing
Viktor Zaverkin
Francesco Alesiani
Takashi Maruyama
Federico Errica
Henrik Christiansen
Makoto Takamoto
Nicolas Weber
Mathias Niepert
46
5
0
23 May 2024
Uncertainty-biased molecular dynamics for learning uniformly accurate
  interatomic potentials
Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
Viktor Zaverkin
David Holzmüller
Henrik Christiansen
Federico Errica
Francesco Alesiani
Makoto Takamoto
Mathias Niepert
Johannes Kastner
AI4CE
29
13
0
03 Dec 2023
Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning
  Based on Gaussian Moments
Thermally Averaged Magnetic Anisotropy Tensors via Machine Learning Based on Gaussian Moments
Viktor Zaverkin
Julia Netz
Fabian Zills
Andreas Köhn
Johannes Kastner
AI4CE
22
16
0
03 Dec 2023
Predicting Properties of Periodic Systems from Cluster Data: A Case
  Study of Liquid Water
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
25
15
0
03 Dec 2023
Evaluation of the MACE Force Field Architecture: from Medicinal
  Chemistry to Materials Science
Evaluation of the MACE Force Field Architecture: from Medicinal Chemistry to Materials Science
D. P. Kovács
Ilyes Batatia
E. Arany
Gábor Csányi
AI4CE
24
82
0
23 May 2023
Transfer learning for chemically accurate interatomic neural network
  potentials
Transfer learning for chemically accurate interatomic neural network potentials
Viktor Zaverkin
David Holzmüller
Luca Bonfirraro
Johannes Kastner
23
24
0
07 Dec 2022
Gaussian Moments as Physically Inspired Molecular Descriptors for
  Accurate and Scalable Machine Learning Potentials
Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials
Viktor Zaverkin
Johannes Kastner
34
67
0
15 Sep 2021
1