ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.09831
  4. Cited By
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
  Optimization

SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization

20 September 2021
Marius Lindauer
Katharina Eggensperger
Matthias Feurer
André Biedenkapp
Difan Deng
C. Benjamins
Tim Ruhopf
René Sass
Frank Hutter
ArXivPDFHTML

Papers citing "SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization"

19 / 19 papers shown
Title
UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model
UncertainSAM: Fast and Efficient Uncertainty Quantification of the Segment Anything Model
T. Kaiser
Thomas Norrenbrock
Bodo Rosenhahn
32
0
0
08 May 2025
Automated Machine Learning for Remaining Useful Life Predictions
Automated Machine Learning for Remaining Useful Life Predictions
Marc Zoller
Fabian Mauthe
P. Zeiler
Marius Lindauer
Marco F. Huber
AI4CE
43
5
0
20 Jan 2025
Hyperparameter Importance Analysis for Multi-Objective AutoML
Hyperparameter Importance Analysis for Multi-Objective AutoML
Daphne Theodorakopoulos
Frederic Stahl
Marius Lindauer
52
2
0
03 Jan 2025
Distributed Thompson sampling under constrained communication
Distributed Thompson sampling under constrained communication
Saba Zerefa
Zhaolin Ren
Haitong Ma
Na Li
23
1
0
03 Jan 2025
Toward Automated Algorithm Design: A Survey and Practical Guide to Meta-Black-Box-Optimization
Toward Automated Algorithm Design: A Survey and Practical Guide to Meta-Black-Box-Optimization
Zeyuan Ma
Hongshu Guo
Yue-jiao Gong
Jun Zhang
Kay Chen Tan
90
2
0
01 Nov 2024
Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection
Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
LM&MA
45
3
0
24 Sep 2024
CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
CATBench: A Compiler Autotuning Benchmarking Suite for Black-box Optimization
Jacob O. Tørring
Carl Hvarfner
Luigi Nardi
Magnus Sjalander
26
0
0
24 Jun 2024
Accel-NASBench: Sustainable Benchmarking for Accelerator-Aware NAS
Accel-NASBench: Sustainable Benchmarking for Accelerator-Aware NAS
Afzal Ahmad
Linfeng Du
Zhiyao Xie
Wei Zhang
16
0
0
09 Apr 2024
Multi-Objective Optimization of Performance and Interpretability of
  Tabular Supervised Machine Learning Models
Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models
Lennart Schneider
B. Bischl
Janek Thomas
13
6
0
17 Jul 2023
A Context-Aware Cutting Plane Selection Algorithm for Mixed-Integer
  Programming
A Context-Aware Cutting Plane Selection Algorithm for Mixed-Integer Programming
Mark Turner
Timo Berthold
Mathieu Besançon
11
1
0
14 Jul 2023
LEO: Learning Efficient Orderings for Multiobjective Binary Decision
  Diagrams
LEO: Learning Efficient Orderings for Multiobjective Binary Decision Diagrams
R. Patel
Elias Boutros Khalil
8
0
0
06 Jul 2023
Automatic MILP Solver Configuration By Learning Problem Similarities
Automatic MILP Solver Configuration By Learning Problem Similarities
Abdelrahman I. Hosny
Sherief Reda
14
4
0
02 Jul 2023
Efficiently Controlling Multiple Risks with Pareto Testing
Efficiently Controlling Multiple Risks with Pareto Testing
Bracha Laufer-Goldshtein
Adam Fisch
Regina Barzilay
Tommi Jaakkola
25
16
0
14 Oct 2022
Automated Dynamic Algorithm Configuration
Automated Dynamic Algorithm Configuration
Steven Adriaensen
André Biedenkapp
Gresa Shala
Noor H. Awad
Theresa Eimer
Marius Lindauer
Frank Hutter
17
36
0
27 May 2022
Efficient Automated Deep Learning for Time Series Forecasting
Efficient Automated Deep Learning for Time Series Forecasting
Difan Deng
Florian Karl
Frank Hutter
Bernd Bischl
Marius Lindauer
AI4TS
17
16
0
11 May 2022
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems
  for HPO
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
19
98
0
14 Sep 2021
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
14
260
0
08 Jul 2020
Time Efficiency in Optimization with a Bayesian-Evolutionary Algorithm
Time Efficiency in Optimization with a Bayesian-Evolutionary Algorithm
Gongjin Lan
Jakub M. Tomczak
D. Roijers
A. E. Eiben
65
66
0
04 May 2020
NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural
  Architecture Search
NAS-Bench-1Shot1: Benchmarking and Dissecting One-shot Neural Architecture Search
Arber Zela
Julien N. Siems
Frank Hutter
64
146
0
28 Jan 2020
1