ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.09910
42
22

Demonstration-Efficient Guided Policy Search via Imitation of Robust Tube MPC

21 September 2021
Andrea Tagliabue
Dong-Ki Kim
M. Everett
Jonathan P. How
ArXivPDFHTML
Abstract

We propose a demonstration-efficient strategy to compress a computationally expensive Model Predictive Controller (MPC) into a more computationally efficient representation based on a deep neural network and Imitation Learning (IL). By generating a Robust Tube variant (RTMPC) of the MPC and leveraging properties from the tube, we introduce a data augmentation method that enables high demonstration-efficiency, being capable to compensate the distribution shifts typically encountered in IL. Our approach opens the possibility of zero-shot transfer from a single demonstration collected in a nominal domain, such as a simulation or a robot in a lab/controlled environment, to a domain with bounded model errors/perturbations. Numerical and experimental evaluations performed on a trajectory tracking MPC for a quadrotor show that our method outperforms strategies commonly employed in IL, such as DAgger and Domain Randomization, in terms of demonstration-efficiency and robustness to perturbations unseen during training.

View on arXiv
Comments on this paper