ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.10465
  4. Cited By
Scalable and Efficient MoE Training for Multitask Multilingual Models

Scalable and Efficient MoE Training for Multitask Multilingual Models

22 September 2021
Young Jin Kim
A. A. Awan
Alexandre Muzio
Andres Felipe Cruz Salinas
Liyang Lu
Amr Hendy
Samyam Rajbhandari
Yuxiong He
Hany Awadalla
    MoE
ArXivPDFHTML

Papers citing "Scalable and Efficient MoE Training for Multitask Multilingual Models"

3 / 3 papers shown
Title
ZeRO-Offload: Democratizing Billion-Scale Model Training
ZeRO-Offload: Democratizing Billion-Scale Model Training
Jie Ren
Samyam Rajbhandari
Reza Yazdani Aminabadi
Olatunji Ruwase
Shuangyang Yang
Minjia Zhang
Dong Li
Yuxiong He
MoE
134
299
0
18 Jan 2021
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
215
3,054
0
23 Jan 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using
  Model Parallelism
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
231
1,436
0
17 Sep 2019
1