ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.15035
  4. Cited By
Focus! Rating XAI Methods and Finding Biases

Focus! Rating XAI Methods and Finding Biases

28 September 2021
Anna Arias-Duart
Ferran Parés
Dario Garcia-Gasulla
Víctor Giménez-Ábalos
ArXivPDFHTML

Papers citing "Focus! Rating XAI Methods and Finding Biases"

15 / 15 papers shown
Title
A Tale of Two Imperatives: Privacy and Explainability
A Tale of Two Imperatives: Privacy and Explainability
Supriya Manna
Niladri Sett
91
0
0
30 Dec 2024
Advancing Attribution-Based Neural Network Explainability through
  Relative Absolute Magnitude Layer-Wise Relevance Propagation and
  Multi-Component Evaluation
Advancing Attribution-Based Neural Network Explainability through Relative Absolute Magnitude Layer-Wise Relevance Propagation and Multi-Component Evaluation
Davor Vukadin
Petar Afrić
Marin Šilić
Goran Delač
FAtt
93
2
0
12 Dec 2024
Establishing and Evaluating Trustworthy AI: Overview and Research
  Challenges
Establishing and Evaluating Trustworthy AI: Overview and Research Challenges
Dominik Kowald
S. Scher
Viktoria Pammer-Schindler
Peter Müllner
Kerstin Waxnegger
...
Andreas Truegler
Eduardo E. Veas
Roman Kern
Tomislav Nad
Simone Kopeinik
34
3
0
15 Nov 2024
On the Evaluation Consistency of Attribution-based Explanations
On the Evaluation Consistency of Attribution-based Explanations
Jiarui Duan
Haoling Li
Haofei Zhang
Hao Jiang
Mengqi Xue
Li Sun
Mingli Song
Jie Song
XAI
46
0
0
28 Jul 2024
Evolutionary Computation and Explainable AI: A Roadmap to Transparent
  Intelligent Systems
Evolutionary Computation and Explainable AI: A Roadmap to Transparent Intelligent Systems
Ryan Zhou
Jaume Bacardit
Alexander Brownlee
Stefano Cagnoni
Martin Fyvie
Giovanni Iacca
John Mccall
N. V. Stein
David Walker
Ting-Kuei Hu
39
0
0
12 Jun 2024
Classification Metrics for Image Explanations: Towards Building Reliable
  XAI-Evaluations
Classification Metrics for Image Explanations: Towards Building Reliable XAI-Evaluations
Benjamin Frész
Lena Lörcher
Marco F. Huber
18
1
0
07 Jun 2024
Red-Teaming Segment Anything Model
Red-Teaming Segment Anything Model
K. Jankowski
Bartlomiej Sobieski
Mateusz Kwiatkowski
J. Szulc
Michael F. Janik
Hubert Baniecki
P. Biecek
VLM
AAML
40
3
0
02 Apr 2024
Impact of Feature Encoding on Malware Classification Explainability
Impact of Feature Encoding on Malware Classification Explainability
E. Manai
M. Mejri
Jaouhar Fattahi
24
1
0
10 Jul 2023
Evolutionary approaches to explainable machine learning
Evolutionary approaches to explainable machine learning
Ryan Zhou
Ting-Kuei Hu
33
7
0
23 Jun 2023
Finding the right XAI method -- A Guide for the Evaluation and Ranking
  of Explainable AI Methods in Climate Science
Finding the right XAI method -- A Guide for the Evaluation and Ranking of Explainable AI Methods in Climate Science
P. Bommer
M. Kretschmer
Anna Hedström
Dilyara Bareeva
Marina M.-C. Höhne
38
38
0
01 Mar 2023
The Meta-Evaluation Problem in Explainable AI: Identifying Reliable
  Estimators with MetaQuantus
The Meta-Evaluation Problem in Explainable AI: Identifying Reliable Estimators with MetaQuantus
Anna Hedström
P. Bommer
Kristoffer K. Wickstrom
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
29
21
0
14 Feb 2023
Understanding User Preferences in Explainable Artificial Intelligence: A
  Survey and a Mapping Function Proposal
Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal
M. Hashemi
Ali Darejeh
Francisco Cruz
40
3
0
07 Feb 2023
Shortcomings of Top-Down Randomization-Based Sanity Checks for
  Evaluations of Deep Neural Network Explanations
Shortcomings of Top-Down Randomization-Based Sanity Checks for Evaluations of Deep Neural Network Explanations
Alexander Binder
Leander Weber
Sebastian Lapuschkin
G. Montavon
Klaus-Robert Muller
Wojciech Samek
FAtt
AAML
11
22
0
22 Nov 2022
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural
  Network Explanations and Beyond
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
Anna Hedström
Leander Weber
Dilyara Bareeva
Daniel G. Krakowczyk
Franz Motzkus
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
XAI
ELM
16
168
0
14 Feb 2022
Investigating Saturation Effects in Integrated Gradients
Investigating Saturation Effects in Integrated Gradients
Vivek Miglani
Narine Kokhlikyan
B. Alsallakh
Miguel Martin
Orion Reblitz-Richardson
FAtt
16
23
0
23 Oct 2020
1