Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.00478
Cited By
SECDA: Efficient Hardware/Software Co-Design of FPGA-based DNN Accelerators for Edge Inference
1 October 2021
Jude Haris
Perry Gibson
José Cano
Nicolas Bohm Agostini
David Kaeli
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SECDA: Efficient Hardware/Software Co-Design of FPGA-based DNN Accelerators for Edge Inference"
7 / 7 papers shown
Title
Exploiting Unstructured Sparsity in Fully Homomorphic Encrypted DNNs
Aidan Ferguson
Perry Gibson
Lara DÁgata
Parker McLeod
Ferhat Yaman
Amitabh Das
Ian Colbert
José Cano
58
0
0
12 Mar 2025
Accelerating PoT Quantization on Edge Devices
Rappy Saha
Jude Haris
José Cano
MQ
18
0
0
30 Sep 2024
Designing Efficient LLM Accelerators for Edge Devices
Jude Haris
Rappy Saha
Wenhao Hu
José Cano
24
7
0
01 Aug 2024
Bifrost: End-to-End Evaluation and Optimization of Reconfigurable DNN Accelerators
Axel Stjerngren
Perry Gibson
José Cano
20
4
0
26 Apr 2022
Measuring the Algorithmic Efficiency of Neural Networks
Danny Hernandez
Tom B. Brown
235
94
0
08 May 2020
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,561
0
17 Apr 2017
Incremental Network Quantization: Towards Lossless CNNs with Low-Precision Weights
Aojun Zhou
Anbang Yao
Yiwen Guo
Lin Xu
Yurong Chen
MQ
316
1,047
0
10 Feb 2017
1