ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.00672
  4. Cited By
Low Frequency Names Exhibit Bias and Overfitting in Contextualizing
  Language Models

Low Frequency Names Exhibit Bias and Overfitting in Contextualizing Language Models

1 October 2021
Robert Wolfe
Aylin Caliskan
ArXivPDFHTML

Papers citing "Low Frequency Names Exhibit Bias and Overfitting in Contextualizing Language Models"

3 / 3 papers shown
Title
CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary
  Representations From Characters
CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary Representations From Characters
Hicham El Boukkouri
Olivier Ferret
Thomas Lavergne
Hiroshi Noji
Pierre Zweigenbaum
Junichi Tsujii
52
148
0
20 Oct 2020
Double-Hard Debias: Tailoring Word Embeddings for Gender Bias Mitigation
Double-Hard Debias: Tailoring Word Embeddings for Gender Bias Mitigation
Tianlu Wang
Xi Victoria Lin
Nazneen Rajani
Bryan McCann
Vicente Ordonez
Caimng Xiong
CVBM
94
49
0
03 May 2020
The Bottom-up Evolution of Representations in the Transformer: A Study
  with Machine Translation and Language Modeling Objectives
The Bottom-up Evolution of Representations in the Transformer: A Study with Machine Translation and Language Modeling Objectives
Elena Voita
Rico Sennrich
Ivan Titov
177
166
0
03 Sep 2019
1