Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.01601
Cited By
NeuFENet: Neural Finite Element Solutions with Theoretical Bounds for Parametric PDEs
4 October 2021
Biswajit Khara
Aditya Balu
Ameya Joshi
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NeuFENet: Neural Finite Element Solutions with Theoretical Bounds for Parametric PDEs"
8 / 8 papers shown
Title
Differentiable Neural-Integrated Meshfree Method for Forward and Inverse Modeling of Finite Strain Hyperelasticity
Honghui Du
Binyao Guo
QiZhi He
AI4CE
25
0
0
15 Jul 2024
A finite element-based physics-informed operator learning framework for spatiotemporal partial differential equations on arbitrary domains
Yusuke Yamazaki
Ali Harandi
Mayu Muramatsu
A. Viardin
Markus Apel
T. Brepols
Stefanie Reese
Shahed Rezaei
AI4CE
26
12
0
21 May 2024
Learning smooth functions in high dimensions: from sparse polynomials to deep neural networks
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
25
4
0
04 Apr 2024
A Deep Learning Framework for Solving Hyperbolic Partial Differential Equations: Part I
Rajat Arora
PINN
AI4CE
15
1
0
09 Jul 2023
CAS4DL: Christoffel Adaptive Sampling for function approximation via Deep Learning
Ben Adcock
Juan M. Cardenas
N. Dexter
14
8
0
25 Aug 2022
SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs
A. A. Ramabathiran
P. Ramachandran
PINN
AI4CE
24
75
0
25 Feb 2021
FEA-Net: A Physics-guided Data-driven Model for Efficient Mechanical Response Prediction
Houpu Yao
Yi Gao
Yongming Liu
AI4CE
49
66
0
31 Jan 2020
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
E. Samaniego
C. Anitescu
S. Goswami
Vien Minh Nguyen-Thanh
Hongwei Guo
Khader M. Hamdia
Timon Rabczuk
X. Zhuang
PINN
AI4CE
145
1,333
0
27 Aug 2019
1