ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.02102
  4. Cited By
CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning

CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning

5 October 2021
C. Benjamins
Theresa Eimer
Frederik Schubert
André Biedenkapp
Bodo Rosenhahn
Frank Hutter
Marius Lindauer
    OffRL
ArXivPDFHTML

Papers citing "CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning"

5 / 5 papers shown
Title
Dyadic Reinforcement Learning
Dyadic Reinforcement Learning
Shuangning Li
L. Niell
S. Choi
Inbal Nahum-Shani
Guy Shani
Susan Murphy
OffRL
6
1
0
15 Aug 2023
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning
  Research
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research
Mikayel Samvelyan
Robert Kirk
Vitaly Kurin
Jack Parker-Holder
Minqi Jiang
Eric Hambro
Fabio Petroni
Heinrich Küttler
Edward Grefenstette
Tim Rocktaschel
OffRL
220
89
0
27 Sep 2021
Robust Reinforcement Learning on State Observations with Learned Optimal
  Adversary
Robust Reinforcement Learning on State Observations with Learned Optimal Adversary
Huan Zhang
Hongge Chen
Duane S. Boning
Cho-Jui Hsieh
50
161
0
21 Jan 2021
Provably Efficient Online Hyperparameter Optimization with
  Population-Based Bandits
Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits
Jack Parker-Holder
Vu Nguyen
Stephen J. Roberts
OffRL
59
82
0
06 Feb 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
234
11,568
0
09 Mar 2017
1