Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.03020
Cited By
Efficient Methods for Online Multiclass Logistic Regression
6 October 2021
Naman Agarwal
Satyen Kale
Julian Zimmert
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficient Methods for Online Multiclass Logistic Regression"
7 / 7 papers shown
Title
MODL: Multilearner Online Deep Learning
Antonios Valkanas
Boris N. Oreshkin
Mark J. Coates
34
1
0
28 May 2024
Online Structured Prediction with Fenchel--Young Losses and Improved Surrogate Regret for Online Multiclass Classification with Logistic Loss
Shinsaku Sakaue
Han Bao
Taira Tsuchiya
Taihei Oki
30
4
0
13 Feb 2024
Improved Regret Bounds of (Multinomial) Logistic Bandits via Regret-to-Confidence-Set Conversion
Junghyun Lee
Se-Young Yun
Kwang-Sung Jun
14
12
0
28 Oct 2023
High-Probability Risk Bounds via Sequential Predictors
Dirk van der Hoeven
Nikita Zhivotovskiy
Nicolò Cesa-Bianchi
OffRL
24
2
0
15 Aug 2023
Quasi-Newton Steps for Efficient Online Exp-Concave Optimization
Zakaria Mhammedi
Khashayar Gatmiry
14
6
0
02 Nov 2022
Scale-free Unconstrained Online Learning for Curved Losses
J. Mayo
Hédi Hadiji
T. Erven
12
11
0
11 Feb 2022
Mixability made efficient: Fast online multiclass logistic regression
Rémi Jézéquel
Pierre Gaillard
Alessandro Rudi
25
10
0
08 Oct 2021
1