ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03095
  4. Cited By
Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space
  Perspective

Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space Perspective

6 October 2021
Luca Scimeca
Seong Joon Oh
Sanghyuk Chun
Michael Poli
Sangdoo Yun
    OOD
ArXivPDFHTML

Papers citing "Which Shortcut Cues Will DNNs Choose? A Study from the Parameter-Space Perspective"

27 / 27 papers shown
Title
DiagViB-6: A Diagnostic Benchmark Suite for Vision Models in the
  Presence of Shortcut and Generalization Opportunities
DiagViB-6: A Diagnostic Benchmark Suite for Vision Models in the Presence of Shortcut and Generalization Opportunities
Elias Eulig
Piyapat Saranrittichai
Chaithanya Kumar Mummadi
K. Rambach
William H. Beluch
Xiahan Shi
Volker Fischer
157
11
0
12 Aug 2021
Loss Surface Simplexes for Mode Connecting Volumes and Fast Ensembling
Loss Surface Simplexes for Mode Connecting Volumes and Fast Ensembling
Gregory W. Benton
Wesley J. Maddox
Sanae Lotfi
A. Wilson
UQCV
40
67
0
25 Feb 2021
Fairness in Machine Learning
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
263
493
0
31 Dec 2020
Training data-efficient image transformers & distillation through
  attention
Training data-efficient image transformers & distillation through attention
Hugo Touvron
Matthieu Cord
Matthijs Douze
Francisco Massa
Alexandre Sablayrolles
Hervé Jégou
ViT
171
6,629
0
23 Dec 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
55
39,900
0
22 Oct 2020
Investigating Bias and Fairness in Facial Expression Recognition
Investigating Bias and Fairness in Facial Expression Recognition
Tian Xu
J. White
Sinan Kalkan
Hatice Gunes
CVBM
49
161
0
20 Jul 2020
What shapes feature representations? Exploring datasets, architectures,
  and training
What shapes feature representations? Exploring datasets, architectures, and training
Katherine L. Hermann
Andrew Kyle Lampinen
OOD
35
155
0
22 Jun 2020
The Pitfalls of Simplicity Bias in Neural Networks
The Pitfalls of Simplicity Bias in Neural Networks
Harshay Shah
Kaustav Tamuly
Aditi Raghunathan
Prateek Jain
Praneeth Netrapalli
AAML
18
354
0
13 Jun 2020
Shortcut Learning in Deep Neural Networks
Shortcut Learning in Deep Neural Networks
Robert Geirhos
J. Jacobsen
Claudio Michaelis
R. Zemel
Wieland Brendel
Matthias Bethge
Felix Wichmann
87
2,013
0
16 Apr 2020
Evaluating Weakly Supervised Object Localization Methods Right
Evaluating Weakly Supervised Object Localization Methods Right
Junsuk Choe
Seong Joon Oh
Seungho Lee
Sanghyuk Chun
Zeynep Akata
Hyunjung Shim
WSOL
318
188
0
21 Jan 2020
Mimetics: Towards Understanding Human Actions Out of Context
Mimetics: Towards Understanding Human Actions Out of Context
Philippe Weinzaepfel
Grégory Rogez
24
71
0
16 Dec 2019
Learning De-biased Representations with Biased Representations
Learning De-biased Representations with Biased Representations
Hyojin Bahng
Sanghyuk Chun
Sangdoo Yun
Jaegul Choo
Seong Joon Oh
OOD
336
276
0
07 Oct 2019
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
404
4,280
0
23 Aug 2019
RUBi: Reducing Unimodal Biases in Visual Question Answering
RUBi: Reducing Unimodal Biases in Visual Question Answering
Rémi Cadène
Corentin Dancette
H. Ben-younes
Matthieu Cord
Devi Parikh
CML
46
372
0
24 Jun 2019
ImageNet-trained CNNs are biased towards texture; increasing shape bias
  improves accuracy and robustness
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
44
2,638
0
29 Nov 2018
Fairness Without Demographics in Repeated Loss Minimization
Fairness Without Demographics in Repeated Loss Minimization
Tatsunori B. Hashimoto
Megha Srivastava
Hongseok Namkoong
Percy Liang
FaML
31
580
0
20 Jun 2018
Deep learning generalizes because the parameter-function map is biased
  towards simple functions
Deep learning generalizes because the parameter-function map is biased towards simple functions
Guillermo Valle Pérez
Chico Q. Camargo
A. Louis
MLT
AI4CE
25
228
0
22 May 2018
Averaging Weights Leads to Wider Optima and Better Generalization
Averaging Weights Leads to Wider Optima and Better Generalization
Pavel Izmailov
Dmitrii Podoprikhin
T. Garipov
Dmitry Vetrov
A. Wilson
FedML
MoMe
65
1,632
0
14 Mar 2018
Essentially No Barriers in Neural Network Energy Landscape
Essentially No Barriers in Neural Network Energy Landscape
Felix Dräxler
K. Veschgini
M. Salmhofer
Fred Hamprecht
MoMe
46
426
0
02 Mar 2018
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs
T. Garipov
Pavel Izmailov
Dmitrii Podoprikhin
Dmitry Vetrov
A. Wilson
UQCV
29
739
0
27 Feb 2018
Visualizing the Loss Landscape of Neural Nets
Visualizing the Loss Landscape of Neural Nets
Hao Li
Zheng Xu
Gavin Taylor
Christoph Studer
Tom Goldstein
178
1,870
0
28 Dec 2017
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep
  Learning
CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning
Pranav Rajpurkar
Jeremy Irvin
Kaylie Zhu
Brandon Yang
Hershel Mehta
...
Aarti Bagul
C. Langlotz
K. Shpanskaya
M. Lungren
A. Ng
LM&MA
35
2,683
0
14 Nov 2017
Towards Understanding Generalization of Deep Learning: Perspective of
  Loss Landscapes
Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes
Lei Wu
Zhanxing Zhu
E. Weinan
ODL
19
220
0
30 Jun 2017
Age Progression/Regression by Conditional Adversarial Autoencoder
Age Progression/Regression by Conditional Adversarial Autoencoder
Zhifei Zhang
Yang Song
Hairong Qi
GAN
CVBM
14
1,107
0
27 Feb 2017
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
142
7,944
0
23 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
658
192,387
0
10 Dec 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
31
18,520
0
06 Feb 2015
1