Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.03220
Cited By
Gradient Step Denoiser for convergent Plug-and-Play
7 October 2021
Samuel Hurault
Arthur Leclaire
Nicolas Papadakis
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gradient Step Denoiser for convergent Plug-and-Play"
50 / 55 papers shown
Title
PG-DPIR: An efficient plug-and-play method for high-count Poisson-Gaussian inverse problems
Maud Biquard
Marie Chabert
Florence Genin
Christophe Latry
Thomas Oberlin
22
0
0
14 Apr 2025
Deep End-to-End Posterior ENergy (DEEPEN) for image recovery
Jyothi Rikhab Chand
M. Jacob
DiffM
33
0
0
21 Mar 2025
Efficient Bayesian Computation Using Plug-and-Play Priors for Poisson Inverse Problems
Teresa Klatzer
Savvas Melidonis
Marcelo Pereyra
K. Zygalakis
45
0
0
20 Mar 2025
From Denoising Score Matching to Langevin Sampling: A Fine-Grained Error Analysis in the Gaussian Setting
Samuel Hurault
M. Terris
Thomas Moreau
Gabriel Peyré
DiffM
31
1
0
14 Mar 2025
Reconstruct Anything Model: a lightweight foundation model for computational imaging
M. Terris
Samuel Hurault
Maxime Song
Julian Tachella
MedIm
DiffM
59
2
0
11 Mar 2025
RestoreGrad: Signal Restoration Using Conditional Denoising Diffusion Models with Jointly Learned Prior
Ching Hua Lee
Chouchang Yang
Jaejin Cho
Yashas Malur Saidutta
R. S. Srinivasa
Yilin Shen
Hongxia Jin
DiffM
80
0
0
19 Feb 2025
Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
42
0
0
28 Jan 2025
Analysis and Synthesis Denoisers for Forward-Backward Plug-and-Play Algorithms
M. Kowalski
Benoit Malézieux
Thomas Moreau
Audrey Repetti
61
0
0
20 Nov 2024
Classification-Denoising Networks
Louis Thiry
Florentin Guth
29
0
0
04 Oct 2024
PnP-Flow: Plug-and-Play Image Restoration with Flow Matching
Ségolène Martin
Anne Gagneux
Paul Hagemann
Gabriele Steidl
36
9
0
03 Oct 2024
A Unified Plug-and-Play Algorithm with Projected Landweber Operator for Split Convex Feasibility Problems
Shuchang Zhang
Hongxia Wang
16
0
0
22 Aug 2024
HPPP: Halpern-type Preconditioned Proximal Point Algorithms and Applications to Image Restoration
Shuchang Zhang
Hui Zhang
Hongxia Wang
38
0
0
18 Jul 2024
Stability of Data-Dependent Ridge-Regularization for Inverse Problems
Sebastian Neumayer
Fabian Altekrüger
21
1
0
18 Jun 2024
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
52
1
0
08 Apr 2024
Learning pseudo-contractive denoisers for inverse problems
Deliang Wei
Peng Chen
Fang Li
19
3
0
08 Feb 2024
Plug-and-Play image restoration with Stochastic deNOising REgularization
Marien Renaud
Jean Prost
Arthur Leclaire
Nicolas Papadakis
DiffM
44
6
0
01 Feb 2024
Low-resolution Prior Equilibrium Network for CT Reconstruction
Yijie Yang
Qifeng Gao
Yuping Duan
14
0
0
28 Jan 2024
Learned reconstruction methods for inverse problems: sample error estimates
Luca Ratti
11
0
0
21 Dec 2023
Equivariant plug-and-play image reconstruction
M. Terris
Thomas Moreau
Nelly Pustelnik
Julian Tachella
25
16
0
04 Dec 2023
Meta-Prior: Meta learning for Adaptive Inverse Problem Solvers
M. Terris
Thomas Moreau
11
0
0
30 Nov 2023
Variational Bayes image restoration with compressive autoencoders
Maud Biquard
Marie Chabert
Thomas Oberlin
11
1
0
29 Nov 2023
Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging
M. Carioni
Subhadip Mukherjee
Hongwei Tan
Junqi Tang
MedIm
12
3
0
15 Nov 2023
Convergent plug-and-play with proximal denoiser and unconstrained regularization parameter
Samuel Hurault
A. Chambolle
Arthur Leclaire
Nicolas Papadakis
13
3
0
02 Nov 2023
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
20
11
0
22 Oct 2023
Provably Convergent Data-Driven Convex-Nonconvex Regularization
Zakhar Shumaylov
Jeremy Budd
Subhadip Mukherjee
Carola-Bibiane Schönlieb
17
5
0
09 Oct 2023
Batch-less stochastic gradient descent for compressive learning of deep regularization for image denoising
Hui Shi
Yann Traonmilin
Jean-François Aujol
6
0
0
02 Oct 2023
Prior Mismatch and Adaptation in PnP-ADMM with a Nonconvex Convergence Analysis
S. Shoushtari
Jiaming Liu
Edward P. Chandler
M. Salman Asif
Ulugbek S. Kamilov
19
3
0
29 Sep 2023
Fast Diffusion EM: a diffusion model for blind inverse problems with application to deconvolution
Charles Laroche
Andrés Almansa
Eva Coupeté
DiffM
17
25
0
01 Sep 2023
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction Algorithms
Alexis Goujon
Sebastian Neumayer
M. Unser
28
23
0
21 Aug 2023
Convergent regularization in inverse problems and linear plug-and-play denoisers
A. Hauptmann
Subhadip Mukherjee
Carola-Bibiane Schönlieb
Ferdia Sherry
13
13
0
18 Jul 2023
Convergent Bregman Plug-and-Play Image Restoration for Poisson Inverse Problems
Samuel Hurault
Ulugbek Kamilov
Arthur Leclaire
Nicolas Papadakis
10
10
0
06 Jun 2023
Block Coordinate Plug-and-Play Methods for Blind Inverse Problems
Weijie Gan
S. Shoushtari
Yuyang Hu
Jiaming Liu
Hongyu An
Ulugbek S. Kamilov
11
11
0
22 May 2023
NF-ULA: Langevin Monte Carlo with Normalizing Flow Prior for Imaging Inverse Problems
Ziruo Cai
Junqi Tang
Subhadip Mukherjee
Jinglai Li
Carola Bibiane Schönlieb
Xiaoqun Zhang
AI4CE
15
3
0
17 Apr 2023
RED-PSM: Regularization by Denoising of Factorized Low Rank Models for Dynamic Imaging
Berk Iskender
M. Klasky
Y. Bresler
17
3
0
07 Apr 2023
Inverse problem regularization with hierarchical variational autoencoders
Jean Prost
Antoine Houdard
Andrés Almansa
Nicolas Papadakis
10
4
0
20 Mar 2023
Fluctuation-based deconvolution in fluorescence microscopy using plug-and-play denoisers
V. Stergiopoulou
Subhadip Mukherjee
L. Calatroni
Laure Blanc-Féraud
6
3
0
20 Mar 2023
Provably Convergent Plug-and-Play Quasi-Newton Methods
Hongwei Tan
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
24
13
0
09 Mar 2023
Restoration based Generative Models
Jaemoo Choi
Yesom Park
Myung-joo Kang
DiffM
AI4CE
18
5
0
20 Feb 2023
A relaxed proximal gradient descent algorithm for convergent plug-and-play with proximal denoiser
Samuel Hurault
A. Chambolle
Arthur Leclaire
Nicolas Papadakis
6
11
0
31 Jan 2023
A Neural-Network-Based Convex Regularizer for Inverse Problems
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
11
26
0
22 Nov 2022
Robustness of Deep Equilibrium Architectures to Changes in the Measurement Model
Jun-Hao Hu
S. Shoushtari
Zihao Zou
Jiaming Liu
Zhixin Sun
Ulugbek S. Kamilov
27
4
0
01 Nov 2022
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
27
12
0
28 Oct 2022
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
33
48
0
04 Oct 2022
Video Restoration with a Deep Plug-and-Play Prior
Antoine Monod
J. Delon
Matias Tassano
Andrés Almansa
15
1
0
06 Sep 2022
Deep Model-Based Architectures for Inverse Problems under Mismatched Priors
S. Shoushtari
Jiaming Liu
Yuyang Hu
Ulugbek S. Kamilov
16
6
0
26 Jul 2022
Learned reconstruction methods with convergence guarantees
Subhadip Mukherjee
A. Hauptmann
Ozan Oktem
Marcelo Pereyra
Carola-Bibiane Schönlieb
17
50
0
11 Jun 2022
Automatic differentiation of nonsmooth iterative algorithms
Jérôme Bolte
Edouard Pauwels
Samuel Vaiter
13
21
0
31 May 2022
Online Deep Equilibrium Learning for Regularization by Denoising
Jiaming Liu
Xiaojian Xu
Weijie Gan
S. Shoushtari
Ulugbek S. Kamilov
16
26
0
25 May 2022
PatchNR: Learning from Very Few Images by Patch Normalizing Flow Regularization
Fabian Altekrüger
Alexander Denker
Paul Hagemann
J. Hertrich
Peter Maass
Gabriele Steidl
MedIm
8
23
0
24 May 2022
PnP-ReG: Learned Regularizing Gradient for Plug-and-Play Gradient Descent
Rita Fermanian
Mikael Le Pendu
C. Guillemot
9
7
0
29 Apr 2022
1
2
Next