ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03608
  4. Cited By
How to Sense the World: Leveraging Hierarchy in Multimodal Perception
  for Robust Reinforcement Learning Agents

How to Sense the World: Leveraging Hierarchy in Multimodal Perception for Robust Reinforcement Learning Agents

7 October 2021
Miguel Vasco
Hang Yin
Francisco S. Melo
Ana Paiva
ArXivPDFHTML

Papers citing "How to Sense the World: Leveraging Hierarchy in Multimodal Perception for Robust Reinforcement Learning Agents"

5 / 5 papers shown
Title
Merging and Disentangling Views in Visual Reinforcement Learning for Robotic Manipulation
Merging and Disentangling Views in Visual Reinforcement Learning for Robotic Manipulation
Abdulaziz Almuzairee
Rohan Patil
Dwait Bhatt
Henrik I. Christensen
22
0
0
07 May 2025
Sense, Imagine, Act: Multimodal Perception Improves Model-Based
  Reinforcement Learning for Head-to-Head Autonomous Racing
Sense, Imagine, Act: Multimodal Perception Improves Model-Based Reinforcement Learning for Head-to-Head Autonomous Racing
Elena Shrestha
C. Reddy
Hanxi Wan
Yulun Zhuang
Ram Vasudevan
17
1
0
08 May 2023
Perceive, Represent, Generate: Translating Multimodal Information to
  Robotic Motion Trajectories
Perceive, Represent, Generate: Translating Multimodal Information to Robotic Motion Trajectories
Fábio Vital
Miguel Vasco
Alberto Sardinha
Francisco S. Melo
14
0
0
06 Apr 2022
Geometric Multimodal Contrastive Representation Learning
Geometric Multimodal Contrastive Representation Learning
Petra Poklukar
Miguel Vasco
Hang Yin
Francisco S. Melo
Ana Paiva
Danica Kragic
13
46
0
07 Feb 2022
Hierarchical VAEs Know What They Don't Know
Hierarchical VAEs Know What They Don't Know
Jakob Drachmann Havtorn
J. Frellsen
Søren Hauberg
Lars Maaløe
DRL
28
71
0
16 Feb 2021
1