ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03786
17
14

Efficient large-scale image retrieval with deep feature orthogonality and Hybrid-Swin-Transformers

7 October 2021
Christof Henkel
ArXivPDFHTML
Abstract

We present an efficient end-to-end pipeline for largescale landmark recognition and retrieval. We show how to combine and enhance concepts from recent research in image retrieval and introduce two architectures especially suited for large-scale landmark identification. A model with deep orthogonal fusion of local and global features (DOLG) using an EfficientNet backbone as well as a novel Hybrid-Swin-Transformer is discussed and details how to train both architectures efficiently using a step-wise approach and a sub-center arcface loss with dynamic margins are provided. Furthermore, we elaborate a novel discriminative re-ranking methodology for image retrieval. The superiority of our approach was demonstrated by winning the recognition and retrieval track of the Google Landmark Competition 2021.

View on arXiv
Comments on this paper