ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.03786
  4. Cited By
Efficient large-scale image retrieval with deep feature orthogonality
  and Hybrid-Swin-Transformers

Efficient large-scale image retrieval with deep feature orthogonality and Hybrid-Swin-Transformers

7 October 2021
Christof Henkel
ArXivPDFHTML

Papers citing "Efficient large-scale image retrieval with deep feature orthogonality and Hybrid-Swin-Transformers"

5 / 5 papers shown
Title
Bent & Broken Bicycles: Leveraging synthetic data for damaged object
  re-identification
Bent & Broken Bicycles: Leveraging synthetic data for damaged object re-identification
Luca Piano
F. G. Pratticó
Alessandro Sebastian Russo
Lorenzo Lanari
Lia Morra
Fabrizio Lamberti
11
1
0
16 Apr 2023
2nd Place Solution to Google Universal Image Embedding
2nd Place Solution to Google Universal Image Embedding
Xiaolong Huang
Qiankun Li
SSL
11
2
0
17 Oct 2022
Google Landmark Retrieval 2021 Competition Third Place Solution
Google Landmark Retrieval 2021 Competition Third Place Solution
Qishen Ha
Bo Liu
Hongwei Zhang
3DV
3DPC
13
2
0
09 Oct 2021
DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local
  and Global Features
DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features
Min Yang
Dongliang He
M. Fan
Baorong Shi
Xuetong Xue
Fu Li
Errui Ding
Jizhou Huang
35
92
0
06 Aug 2021
WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual
  Machine Learning
WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning
Krishna Srinivasan
K. Raman
Jiecao Chen
Michael Bendersky
Marc Najork
VLM
197
308
0
02 Mar 2021
1