ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.04126
  4. Cited By
3D Infomax improves GNNs for Molecular Property Prediction

3D Infomax improves GNNs for Molecular Property Prediction

8 October 2021
Hannes Stärk
Dominique Beaini
Gabriele Corso
Prudencio Tossou
Christian Dallago
Stephan Günnemann
Pietro Lió
    AI4CE
ArXivPDFHTML

Papers citing "3D Infomax improves GNNs for Molecular Property Prediction"

14 / 114 papers shown
Title
Pre-training Transformers for Molecular Property Prediction Using
  Reaction Prediction
Pre-training Transformers for Molecular Property Prediction Using Reaction Prediction
J. Broberg
Maria Bånkestad
Erik Ylipää
AI4CE
11
5
0
06 Jul 2022
CoSP: Co-supervised pretraining of pocket and ligand
CoSP: Co-supervised pretraining of pocket and ligand
Zhangyang Gao
Cheng Tan
Lirong Wu
Stan Z. Li
10
16
0
23 Jun 2022
Long Range Graph Benchmark
Long Range Graph Benchmark
Vijay Prakash Dwivedi
Ladislav Rampášek
Mikhail Galkin
Alipanah Parviz
Guy Wolf
A. Luu
Dominique Beaini
11
193
0
16 Jun 2022
Evaluating Self-Supervised Learning for Molecular Graph Embeddings
Evaluating Self-Supervised Learning for Molecular Graph Embeddings
Hanchen Wang
Jean Kaddour
Shengchao Liu
Jian Tang
Joan Lasenby
Qi Liu
8
20
0
16 Jun 2022
KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular
  Property Prediction
KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular Property Prediction
Han Li
Dan Zhao
Jianyang Zeng
17
59
0
02 Jun 2022
3D Graph Contrastive Learning for Molecular Property Prediction
Kisung Moon
Sunyoung Kwon
9
17
0
31 May 2022
Crystal Twins: Self-supervised Learning for Crystalline Material
  Property Prediction
Crystal Twins: Self-supervised Learning for Crystalline Material Property Prediction
Rishikesh Magar
Yuyang Wang
Amir Barati Farimani
13
40
0
04 May 2022
Graph Neural Networks in Particle Physics: Implementations, Innovations,
  and Challenges
Graph Neural Networks in Particle Physics: Implementations, Innovations, and Challenges
S. Thais
P. Calafiura
G. Chachamis
G. Dezoort
Javier Mauricio Duarte
S. Ganguly
Michael Kagan
D. Murnane
Mark S. Neubauer
K. Terao
PINN
AI4CE
12
30
0
23 Mar 2022
Improving Molecular Contrastive Learning via Faulty Negative Mitigation
  and Decomposed Fragment Contrast
Improving Molecular Contrastive Learning via Faulty Negative Mitigation and Decomposed Fragment Contrast
Yuyang Wang
Rishikesh Magar
Chen Liang
A. Farimani
32
78
0
18 Feb 2022
On Representation Knowledge Distillation for Graph Neural Networks
On Representation Knowledge Distillation for Graph Neural Networks
Chaitanya K. Joshi
Fayao Liu
Xu Xun
Jie Lin
Chuan-Sheng Foo
14
53
0
09 Nov 2021
Pre-training Molecular Graph Representation with 3D Geometry
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
106
294
0
07 Oct 2021
Large-Scale Chemical Language Representations Capture Molecular
  Structure and Properties
Large-Scale Chemical Language Representations Capture Molecular Structure and Properties
Jerret Ross
Brian M. Belgodere
Vijil Chenthamarakshan
Inkit Padhi
Youssef Mroueh
Payel Das
AI4CE
11
265
0
17 Jun 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
161
1,095
0
27 Apr 2021
MoleculeNet: A Benchmark for Molecular Machine Learning
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
152
1,748
0
02 Mar 2017
Previous
123