ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.06435
  4. Cited By
Dropout Prediction Uncertainty Estimation Using Neuron Activation
  Strength
v1v2v3 (latest)

Dropout Prediction Uncertainty Estimation Using Neuron Activation Strength

13 October 2021
Haichao Yu
Zhe Chen
Dong Lin
G. Shamir
Jie Han
    UQCV
ArXiv (abs)PDFHTML

Papers citing "Dropout Prediction Uncertainty Estimation Using Neuron Activation Strength"

22 / 22 papers shown
Title
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDLUQCVOOD
240
1,165
0
07 Jul 2021
Towards Understanding Ensemble, Knowledge Distillation and
  Self-Distillation in Deep Learning
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
169
376
0
17 Dec 2020
Underspecification Presents Challenges for Credibility in Modern Machine
  Learning
Underspecification Presents Challenges for Credibility in Modern Machine Learning
Alexander DÁmour
Katherine A. Heller
D. Moldovan
Ben Adlam
B. Alipanahi
...
Kellie Webster
Steve Yadlowsky
T. Yun
Xiaohua Zhai
D. Sculley
OffRL
145
688
0
06 Nov 2020
Smooth activations and reproducibility in deep networks
Smooth activations and reproducibility in deep networks
G. Shamir
Dong Lin
Lorenzo Coviello
66
23
0
20 Oct 2020
Anti-Distillation: Improving reproducibility of deep networks
Anti-Distillation: Improving reproducibility of deep networks
G. Shamir
Lorenzo Coviello
101
19
0
19 Oct 2020
Training independent subnetworks for robust prediction
Training independent subnetworks for robust prediction
Marton Havasi
Rodolphe Jenatton
Stanislav Fort
Jeremiah Zhe Liu
Jasper Snoek
Balaji Lakshminarayanan
Andrew M. Dai
Dustin Tran
UQCVOOD
106
213
0
13 Oct 2020
Beyond Point Estimate: Inferring Ensemble Prediction Variation from
  Neuron Activation Strength in Recommender Systems
Beyond Point Estimate: Inferring Ensemble Prediction Variation from Neuron Activation Strength in Recommender Systems
Zhe Chen
Yuyan Wang
Dong Lin
D. Cheng
Lichan Hong
Ed H. Chi
Claire Cui
100
17
0
17 Aug 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCVBDLOOD
141
656
0
20 Feb 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and
  Lifelong Learning
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OODFedMLUQCV
195
494
0
17 Feb 2020
Deep Ensembles: A Loss Landscape Perspective
Deep Ensembles: A Loss Landscape Perspective
Stanislav Fort
Huiyi Hu
Balaji Lakshminarayanan
OODUQCV
131
630
0
05 Dec 2019
Deep Sub-Ensembles for Fast Uncertainty Estimation in Image
  Classification
Deep Sub-Ensembles for Fast Uncertainty Estimation in Image Classification
Matias Valdenegro-Toro
UQCV
113
52
0
17 Oct 2019
DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep
  Networks
DropConnect Is Effective in Modeling Uncertainty of Bayesian Deep Networks
Aryan Mobiny
H. Nguyen
S. Moulik
Naveen Garg
Carol C. Wu
UQCVBDL
76
163
0
07 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
197
1,707
0
06 Jun 2019
Large scale distributed neural network training through online
  distillation
Large scale distributed neural network training through online distillation
Rohan Anil
Gabriel Pereyra
Alexandre Passos
Róbert Ormándi
George E. Dahl
Geoffrey E. Hinton
FedML
336
408
0
09 Apr 2018
Deep Bayesian Active Learning with Image Data
Deep Bayesian Active Learning with Image Data
Y. Gal
Riashat Islam
Zoubin Ghahramani
BDLUQCV
80
1,739
0
08 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
852
5,849
0
05 Dec 2016
Bayesian Convolutional Neural Networks with Bernoulli Approximate
  Variational Inference
Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference
Y. Gal
Zoubin Ghahramani
UQCVBDL
321
751
0
06 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
916
9,370
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCVBDL
196
1,897
0
20 May 2015
Deep Learning and the Information Bottleneck Principle
Deep Learning and the Information Bottleneck Principle
Naftali Tishby
Noga Zaslavsky
DRL
220
1,595
0
09 Mar 2015
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
486
16,915
0
20 Dec 2013
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
280
2,629
0
29 Jun 2012
1