ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.06717
  4. Cited By
On the Parameter Combinations That Matter and on Those That do Not
v1v2 (latest)

On the Parameter Combinations That Matter and on Those That do Not

13 October 2021
N. Evangelou
Noah J. Wichrowski
George A. Kevrekidis
Felix Dietrich
M. Kooshkbaghi
Sarah McFann
Ioannis G. Kevrekidis
ArXiv (abs)PDFHTML

Papers citing "On the Parameter Combinations That Matter and on Those That do Not"

9 / 9 papers shown
Title
On Some Tunable Multi-fidelity Bayesian Optimization Frameworks
On Some Tunable Multi-fidelity Bayesian Optimization Frameworks
Arjun Manoj
Anastasia S. Georgiou
Dimitris G. Giovanis
T. Sapsis
Ioannis G. Kevrekidis
86
0
0
01 Aug 2025
Hierarchical Dimensionless Learning (Hi-π): A physics-data hybrid-driven approach for discovering dimensionless parameter combinations
Hierarchical Dimensionless Learning (Hi-π): A physics-data hybrid-driven approach for discovering dimensionless parameter combinations
Mingkun Xia
Haitao Lin
Weiwei Zhang
AI4CE
41
0
0
24 Jul 2025
Thinner Latent Spaces: Detecting Dimension and Imposing Invariance with Conformal Autoencoders
Thinner Latent Spaces: Detecting Dimension and Imposing Invariance with Conformal Autoencoders
George A. Kevrekidis
Mauro Maggioni
Mauro Maggioni
Soledad Villar
Yannis G. Kevrekidis
DRL
144
0
0
28 Aug 2024
Identifiability of Differential-Algebraic Systems
Identifiability of Differential-Algebraic Systems
A. Montanari
François Lamoline
Robert Bereza
Jorge Gonçalves
70
1
0
22 May 2024
Integrating supervised and unsupervised learning approaches to unveil
  critical process inputs
Integrating supervised and unsupervised learning approaches to unveil critical process inputsComputers and Chemical Engineering (Comput. Chem. Eng.), 2024
Paris Papavasileiou
Dimitrios G. Giovanis
Gabriele Pozzetti
M. Kathrein
Christoph Czettl
Ioannis G. Kevrekidis
A. Boudouvis
Stéphane P. A. Bordas
E. D. Koronaki
84
4
0
13 May 2024
Nonlinear Manifold Learning Determines Microgel Size from Raman
  Spectroscopy
Nonlinear Manifold Learning Determines Microgel Size from Raman SpectroscopyAIChE Journal (AIChE J.), 2024
E. D. Koronaki
Luise F. Kaven
Johannes M. M. Faust
Ioannis G. Kevrekidis
Alexander Mitsos
46
0
0
13 Mar 2024
Tipping Points of Evolving Epidemiological Networks: Machine
  Learning-Assisted, Data-Driven Effective Modeling
Tipping Points of Evolving Epidemiological Networks: Machine Learning-Assisted, Data-Driven Effective ModelingChaos (Chaos), 2023
N. Evangelou
Tianqi Cui
J. M. Bello-Rivas
Alexei Makeev
Ioannis G. Kevrekidis
142
3
0
01 Nov 2023
Machine Learning for the identification of phase-transitions in
  interacting agent-based systems: a Desai-Zwanzig example
Machine Learning for the identification of phase-transitions in interacting agent-based systems: a Desai-Zwanzig examplePhysical Review E (PRE), 2023
N. Evangelou
Dimitrios G. Giovanis
George A. Kevrekidis
G. Pavliotis
Ioannis G. Kevrekidis
156
0
0
29 Oct 2023
Dimensionless machine learning: Imposing exact units equivariance
Dimensionless machine learning: Imposing exact units equivarianceJournal of machine learning research (JMLR), 2022
Soledad Villar
Weichi Yao
D. Hogg
Ben Blum-Smith
Bianca Dumitrascu
154
30
0
02 Apr 2022
1