Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.07238
Cited By
On the difficulty of learning chaotic dynamics with RNNs
14 October 2021
Jonas M. Mikhaeil
Zahra Monfared
Daniel Durstewitz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"On the difficulty of learning chaotic dynamics with RNNs"
8 / 8 papers shown
Title
When are dynamical systems learned from time series data statistically accurate?
Jeongjin Park
Nicole Yang
Nisha Chandramoorthy
AI4TS
29
4
0
09 Nov 2024
A scalable generative model for dynamical system reconstruction from neuroimaging data
Eric Volkmann
Alena Brändle
Daniel Durstewitz
G. Koppe
AI4CE
28
1
0
05 Nov 2024
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Manuel Brenner
Elias Weber
G. Koppe
Daniel Durstewitz
AI4TS
AI4CE
22
2
0
07 Oct 2024
Oscillatory State-Space Models
T. Konstantin Rusch
Daniela Rus
AI4TS
42
4
0
04 Oct 2024
Zero-shot forecasting of chaotic systems
Yuanzhao Zhang
William Gilpin
AI4TS
37
4
0
24 Sep 2024
Predicting Chaotic System Behavior using Machine Learning Techniques
Huaiyuan Rao
Yichen Zhao
Qiang Lai
14
0
0
11 Aug 2024
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
Manuela Brenner
Florian Hess
Jonas M. Mikhaeil
Leonard Bereska
Zahra Monfared
Po-Chen Kuo
Daniel Durstewitz
AI4CE
35
29
0
06 Jul 2022
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
197
2,254
0
18 Oct 2020
1