Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.07602
Cited By
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
14 October 2021
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks"
7 / 7 papers shown
Title
MSP: Multi-Stage Prompting for Making Pre-trained Language Models Better Translators
Zhixing Tan
Xiangwen Zhang
Shuo Wang
Yang Liu
VLM
LRM
176
45
0
13 Oct 2021
Aspect Sentiment Quad Prediction as Paraphrase Generation
Wenxuan Zhang
Yang Deng
Xin Li
Yifei Yuan
Lidong Bing
W. Lam
176
127
0
02 Oct 2021
FewNLU: Benchmarking State-of-the-Art Methods for Few-Shot Natural Language Understanding
Yanan Zheng
Jing Zhou
Yujie Qian
Ming Ding
Chonghua Liao
Jian Li
Ruslan Salakhutdinov
Jie Tang
Sebastian Ruder
Zhilin Yang
ELM
177
28
0
27 Sep 2021
What Changes Can Large-scale Language Models Bring? Intensive Study on HyperCLOVA: Billions-scale Korean Generative Pretrained Transformers
Boseop Kim
Hyoungseok Kim
Sang-Woo Lee
Gichang Lee
Donghyun Kwak
...
Jaewook Kang
Inho Kang
Jung-Woo Ha
W. Park
Nako Sung
VLM
204
108
0
10 Sep 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
254
2,999
0
18 Apr 2021
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
223
1,649
0
31 Dec 2020
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
267
6,003
0
20 Apr 2018
1