Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.09468
Cited By
Improving Robustness using Generated Data
18 October 2021
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Robustness using Generated Data"
50 / 56 papers shown
Title
Diffusion-based Adversarial Purification from the Perspective of the Frequency Domain
Gaozheng Pei
Ke Ma
Yingfei Sun
Qianqian Xu
Q. Huang
DiffM
40
0
0
02 May 2025
Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models
Patrick Müller
Alexander Braun
M. Keuper
50
0
0
25 Apr 2025
Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness
Emanuele Ballarin
A. Ansuini
Luca Bortolussi
AAML
62
0
0
20 Feb 2025
Artificial Kuramoto Oscillatory Neurons
Takeru Miyato
Sindy Lowe
Andreas Geiger
Max Welling
AI4CE
67
6
0
17 Feb 2025
Does Training on Synthetic Data Make Models Less Robust?
Lingze Zhang
Ellie Pavlick
SyDa
84
0
0
11 Feb 2025
MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework
Ping Guo
Cheng Gong
Xi Victoria Lin
Fei Liu
Zhichao Lu
Qingfu Zhang
Zhenkun Wang
AAML
36
0
0
13 Jan 2025
Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks
Yong Xie
Weijie Zheng
Hanxun Huang
Guangnan Ye
Xingjun Ma
AAML
72
1
0
20 Nov 2024
FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training
Tejaswini Medi
Steffen Jung
M. Keuper
AAML
29
3
0
30 Oct 2024
Privacy-preserving datasets by capturing feature distributions with Conditional VAEs
Francesco Di Salvo
David Tafler
Sebastian Doerrich
Christian Ledig
CML
28
0
0
01 Aug 2024
ADBM: Adversarial diffusion bridge model for reliable adversarial purification
Xiao-Li Li
Wenxuan Sun
Huanran Chen
Qiongxiu Li
Yining Liu
Yingzhe He
Jie Shi
Xiaolin Hu
AAML
48
7
0
01 Aug 2024
Adversarial Robustification via Text-to-Image Diffusion Models
Daewon Choi
Jongheon Jeong
Huiwon Jang
Jinwoo Shin
DiffM
30
1
0
26 Jul 2024
PartImageNet++ Dataset: Scaling up Part-based Models for Robust Recognition
Xiao-Li Li
Yining Liu
Na Dong
Sitian Qin
Xiaolin Hu
34
3
0
15 Jul 2024
Specification Overfitting in Artificial Intelligence
Benjamin Roth
Pedro Henrique Luz de Araujo
Yuxi Xia
Saskia Kaltenbrunner
Christoph Korab
56
0
0
13 Mar 2024
Better Representations via Adversarial Training in Pre-Training: A Theoretical Perspective
Yue Xing
Xiaofeng Lin
Qifan Song
Yi Tian Xu
Belinda Zeng
Guang Cheng
SSL
8
0
0
26 Jan 2024
MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness
Xiaoyun Xu
Shujian Yu
Jingzheng Wu
S. Picek
AAML
33
0
0
08 Dec 2023
Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with Synthetic Images
Zhuoran Yu
Chenchen Zhu
Sean Culatana
Raghuraman Krishnamoorthi
Fanyi Xiao
Yong Jae Lee
109
13
0
04 Dec 2023
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Yatong Bai
Brendon G. Anderson
Somayeh Sojoudi
AAML
19
2
0
26 Nov 2023
On The Relationship Between Universal Adversarial Attacks And Sparse Representations
Dana Weitzner
Raja Giryes
AAML
19
0
0
14 Nov 2023
Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods
A. Ma
Yangchen Pan
Amir-massoud Farahmand
AAML
25
5
0
13 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
28
2
0
01 Aug 2023
DEFTri: A Few-Shot Label Fused Contextual Representation Learning For Product Defect Triage in e-Commerce
Ipsita Mohanty
14
2
0
21 Jul 2023
Mitigating Adversarial Vulnerability through Causal Parameter Estimation by Adversarial Double Machine Learning
Byung-Kwan Lee
Junho Kim
Yonghyun Ro
AAML
10
9
0
14 Jul 2023
Enhancing Adversarial Robustness via Score-Based Optimization
Boya Zhang
Weijian Luo
Zhihua Zhang
DiffM
19
12
0
10 Jul 2023
Group-based Robustness: A General Framework for Customized Robustness in the Real World
Weiran Lin
Keane Lucas
Neo Eyal
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
OOD
AAML
22
1
0
29 Jun 2023
On the Importance of Backbone to the Adversarial Robustness of Object Detectors
Xiao-Li Li
Hang Chen
Xiaolin Hu
AAML
34
4
0
27 May 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
30
48
0
18 May 2023
Raising the Bar for Certified Adversarial Robustness with Diffusion Models
Thomas Altstidl
David Dobre
Björn Eskofier
Gauthier Gidel
Leo Schwinn
DiffM
20
7
0
17 May 2023
Utility Theory of Synthetic Data Generation
Shi Xu
W. Sun
Guang Cheng
15
5
0
17 May 2023
An Extended Study of Human-like Behavior under Adversarial Training
Paul Gavrikov
J. Keuper
M. Keuper
AAML
21
9
0
22 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
25
34
0
19 Mar 2023
MultiRobustBench: Benchmarking Robustness Against Multiple Attacks
Sihui Dai
Saeed Mahloujifar
Chong Xiang
Vikash Sehwag
Pin-Yu Chen
Prateek Mittal
AAML
OOD
14
7
0
21 Feb 2023
Characterizing the Optimal 0-1 Loss for Multi-class Classification with a Test-time Attacker
Sihui Dai
Wen-Luan Ding
A. Bhagoji
Daniel Cullina
Ben Y. Zhao
Haitao Zheng
Prateek Mittal
AAML
27
2
0
21 Feb 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min-Bin Lin
Weiwei Liu
Shuicheng Yan
DiffM
14
207
0
09 Feb 2023
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
Yatong Bai
Brendon G. Anderson
Aerin Kim
Somayeh Sojoudi
AAML
19
18
0
29 Jan 2023
Data Augmentation Alone Can Improve Adversarial Training
Lin Li
Michael W. Spratling
16
49
0
24 Jan 2023
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
22
5
0
15 Dec 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Gal Mishne
OOD
24
4
0
20 Oct 2022
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
14
24
0
12 Oct 2022
Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization
Ziquan Liu
Antoni B. Chan
AAML
25
5
0
11 Oct 2022
Inducing Data Amplification Using Auxiliary Datasets in Adversarial Training
Saehyung Lee
Hyungyu Lee
AAML
22
2
0
27 Sep 2022
Bag of Tricks for FGSM Adversarial Training
Zichao Li
Li Liu
Zeyu Wang
Yuyin Zhou
Cihang Xie
AAML
14
6
0
06 Sep 2022
Constraining Representations Yields Models That Know What They Don't Know
João Monteiro
Pau Rodríguez López
Pierre-Andre Noel
I. Laradji
David Vazquez
AAML
28
0
0
30 Aug 2022
Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Dong Huang
Qi Bu
Yuhao Qing
Haowen Pi
Sen Wang
Heming Cui
OOD
AAML
16
0
0
17 Aug 2022
Increasing Confidence in Adversarial Robustness Evaluations
Roland S. Zimmermann
Wieland Brendel
Florian Tramèr
Nicholas Carlini
AAML
36
16
0
28 Jun 2022
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Ruochen Jiao
Xiangguo Liu
Takami Sato
Qi Alfred Chen
Qi Zhu
AAML
23
20
0
27 May 2022
Adversarial Attack on Attackers: Post-Process to Mitigate Black-Box Score-Based Query Attacks
Sizhe Chen
Zhehao Huang
Qinghua Tao
Yingwen Wu
Cihang Xie
X. Huang
AAML
106
28
0
24 May 2022
Diffusion Models for Adversarial Purification
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
195
415
0
16 May 2022
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
25
15
0
05 Apr 2022
Generating High Fidelity Data from Low-density Regions using Diffusion Models
Vikash Sehwag
C. Hazirbas
Albert Gordo
Firat Ozgenel
Cristian Canton Ferrer
DiffM
25
66
0
31 Mar 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks
A. Harrington
Arturo Deza
OOD
AAML
21
20
0
02 Feb 2022
1
2
Next