ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.09468
  4. Cited By
Improving Robustness using Generated Data

Improving Robustness using Generated Data

18 October 2021
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
ArXivPDFHTML

Papers citing "Improving Robustness using Generated Data"

50 / 56 papers shown
Title
Diffusion-based Adversarial Purification from the Perspective of the Frequency Domain
Diffusion-based Adversarial Purification from the Perspective of the Frequency Domain
Gaozheng Pei
Ke Ma
Yingfei Sun
Qianqian Xu
Q. Huang
DiffM
40
0
0
02 May 2025
Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models
Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models
Patrick Müller
Alexander Braun
M. Keuper
50
0
0
25 Apr 2025
Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness
Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness
Emanuele Ballarin
A. Ansuini
Luca Bortolussi
AAML
62
0
0
20 Feb 2025
Artificial Kuramoto Oscillatory Neurons
Artificial Kuramoto Oscillatory Neurons
Takeru Miyato
Sindy Lowe
Andreas Geiger
Max Welling
AI4CE
67
6
0
17 Feb 2025
Does Training on Synthetic Data Make Models Less Robust?
Does Training on Synthetic Data Make Models Less Robust?
Lingze Zhang
Ellie Pavlick
SyDa
84
0
0
11 Feb 2025
MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework
MOS-Attack: A Scalable Multi-objective Adversarial Attack Framework
Ping Guo
Cheng Gong
Xi Victoria Lin
Fei Liu
Zhichao Lu
Qingfu Zhang
Zhenkun Wang
AAML
36
0
0
13 Jan 2025
Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks
Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks
Yong Xie
Weijie Zheng
Hanxun Huang
Guangnan Ye
Xingjun Ma
AAML
72
1
0
20 Nov 2024
FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training
FAIR-TAT: Improving Model Fairness Using Targeted Adversarial Training
Tejaswini Medi
Steffen Jung
M. Keuper
AAML
29
3
0
30 Oct 2024
Privacy-preserving datasets by capturing feature distributions with
  Conditional VAEs
Privacy-preserving datasets by capturing feature distributions with Conditional VAEs
Francesco Di Salvo
David Tafler
Sebastian Doerrich
Christian Ledig
CML
28
0
0
01 Aug 2024
ADBM: Adversarial diffusion bridge model for reliable adversarial purification
ADBM: Adversarial diffusion bridge model for reliable adversarial purification
Xiao-Li Li
Wenxuan Sun
Huanran Chen
Qiongxiu Li
Yining Liu
Yingzhe He
Jie Shi
Xiaolin Hu
AAML
48
7
0
01 Aug 2024
Adversarial Robustification via Text-to-Image Diffusion Models
Adversarial Robustification via Text-to-Image Diffusion Models
Daewon Choi
Jongheon Jeong
Huiwon Jang
Jinwoo Shin
DiffM
30
1
0
26 Jul 2024
PartImageNet++ Dataset: Scaling up Part-based Models for Robust
  Recognition
PartImageNet++ Dataset: Scaling up Part-based Models for Robust Recognition
Xiao-Li Li
Yining Liu
Na Dong
Sitian Qin
Xiaolin Hu
34
3
0
15 Jul 2024
Specification Overfitting in Artificial Intelligence
Specification Overfitting in Artificial Intelligence
Benjamin Roth
Pedro Henrique Luz de Araujo
Yuxi Xia
Saskia Kaltenbrunner
Christoph Korab
56
0
0
13 Mar 2024
Better Representations via Adversarial Training in Pre-Training: A
  Theoretical Perspective
Better Representations via Adversarial Training in Pre-Training: A Theoretical Perspective
Yue Xing
Xiaofeng Lin
Qifan Song
Yi Tian Xu
Belinda Zeng
Guang Cheng
SSL
8
0
0
26 Jan 2024
MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness
MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness
Xiaoyun Xu
Shujian Yu
Jingzheng Wu
S. Picek
AAML
33
0
0
08 Dec 2023
Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with Synthetic Images
Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with Synthetic Images
Zhuoran Yu
Chenchen Zhu
Sean Culatana
Raghuraman Krishnamoorthi
Fanyi Xiao
Yong Jae Lee
109
13
0
04 Dec 2023
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Mixing Classifiers to Alleviate the Accuracy-Robustness Trade-Off
Yatong Bai
Brendon G. Anderson
Somayeh Sojoudi
AAML
19
2
0
26 Nov 2023
On The Relationship Between Universal Adversarial Attacks And Sparse
  Representations
On The Relationship Between Universal Adversarial Attacks And Sparse Representations
Dana Weitzner
Raja Giryes
AAML
19
0
0
14 Nov 2023
Understanding the robustness difference between stochastic gradient
  descent and adaptive gradient methods
Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods
A. Ma
Yangchen Pan
Amir-massoud Farahmand
AAML
25
5
0
13 Aug 2023
Doubly Robust Instance-Reweighted Adversarial Training
Doubly Robust Instance-Reweighted Adversarial Training
Daouda Sow
Sen-Fon Lin
Zhangyang Wang
Yitao Liang
AAML
OOD
28
2
0
01 Aug 2023
DEFTri: A Few-Shot Label Fused Contextual Representation Learning For
  Product Defect Triage in e-Commerce
DEFTri: A Few-Shot Label Fused Contextual Representation Learning For Product Defect Triage in e-Commerce
Ipsita Mohanty
14
2
0
21 Jul 2023
Mitigating Adversarial Vulnerability through Causal Parameter Estimation
  by Adversarial Double Machine Learning
Mitigating Adversarial Vulnerability through Causal Parameter Estimation by Adversarial Double Machine Learning
Byung-Kwan Lee
Junho Kim
Yonghyun Ro
AAML
10
9
0
14 Jul 2023
Enhancing Adversarial Robustness via Score-Based Optimization
Enhancing Adversarial Robustness via Score-Based Optimization
Boya Zhang
Weijian Luo
Zhihua Zhang
DiffM
19
12
0
10 Jul 2023
Group-based Robustness: A General Framework for Customized Robustness in
  the Real World
Group-based Robustness: A General Framework for Customized Robustness in the Real World
Weiran Lin
Keane Lucas
Neo Eyal
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
OOD
AAML
22
1
0
29 Jun 2023
On the Importance of Backbone to the Adversarial Robustness of Object Detectors
On the Importance of Backbone to the Adversarial Robustness of Object Detectors
Xiao-Li Li
Hang Chen
Xiaolin Hu
AAML
34
4
0
27 May 2023
How Deep Learning Sees the World: A Survey on Adversarial Attacks &
  Defenses
How Deep Learning Sees the World: A Survey on Adversarial Attacks & Defenses
Joana Cabral Costa
Tiago Roxo
Hugo Manuel Proença
Pedro R. M. Inácio
AAML
30
48
0
18 May 2023
Raising the Bar for Certified Adversarial Robustness with Diffusion
  Models
Raising the Bar for Certified Adversarial Robustness with Diffusion Models
Thomas Altstidl
David Dobre
Björn Eskofier
Gauthier Gidel
Leo Schwinn
DiffM
20
7
0
17 May 2023
Utility Theory of Synthetic Data Generation
Utility Theory of Synthetic Data Generation
Shi Xu
W. Sun
Guang Cheng
15
5
0
17 May 2023
An Extended Study of Human-like Behavior under Adversarial Training
An Extended Study of Human-like Behavior under Adversarial Training
Paul Gavrikov
J. Keuper
M. Keuper
AAML
21
9
0
22 Mar 2023
Randomized Adversarial Training via Taylor Expansion
Randomized Adversarial Training via Taylor Expansion
Gao Jin
Xinping Yi
Dengyu Wu
Ronghui Mu
Xiaowei Huang
AAML
25
34
0
19 Mar 2023
MultiRobustBench: Benchmarking Robustness Against Multiple Attacks
MultiRobustBench: Benchmarking Robustness Against Multiple Attacks
Sihui Dai
Saeed Mahloujifar
Chong Xiang
Vikash Sehwag
Pin-Yu Chen
Prateek Mittal
AAML
OOD
14
7
0
21 Feb 2023
Characterizing the Optimal 0-1 Loss for Multi-class Classification with
  a Test-time Attacker
Characterizing the Optimal 0-1 Loss for Multi-class Classification with a Test-time Attacker
Sihui Dai
Wen-Luan Ding
A. Bhagoji
Daniel Cullina
Ben Y. Zhao
Haitao Zheng
Prateek Mittal
AAML
27
2
0
21 Feb 2023
Better Diffusion Models Further Improve Adversarial Training
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min-Bin Lin
Weiwei Liu
Shuicheng Yan
DiffM
14
207
0
09 Feb 2023
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive
  Smoothing
Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing
Yatong Bai
Brendon G. Anderson
Aerin Kim
Somayeh Sojoudi
AAML
19
18
0
29 Jan 2023
Data Augmentation Alone Can Improve Adversarial Training
Data Augmentation Alone Can Improve Adversarial Training
Lin Li
Michael W. Spratling
16
49
0
24 Jan 2023
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks
Nikolaos Antoniou
Efthymios Georgiou
Alexandros Potamianos
AAML
22
5
0
15 Dec 2022
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Learning Sample Reweighting for Accuracy and Adversarial Robustness
Chester Holtz
Tsui-Wei Weng
Gal Mishne
OOD
24
4
0
20 Oct 2022
Robust Models are less Over-Confident
Robust Models are less Over-Confident
Julia Grabinski
Paul Gavrikov
J. Keuper
M. Keuper
AAML
14
24
0
12 Oct 2022
Boosting Adversarial Robustness From The Perspective of Effective Margin
  Regularization
Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization
Ziquan Liu
Antoni B. Chan
AAML
25
5
0
11 Oct 2022
Inducing Data Amplification Using Auxiliary Datasets in Adversarial
  Training
Inducing Data Amplification Using Auxiliary Datasets in Adversarial Training
Saehyung Lee
Hyungyu Lee
AAML
22
2
0
27 Sep 2022
Bag of Tricks for FGSM Adversarial Training
Bag of Tricks for FGSM Adversarial Training
Zichao Li
Li Liu
Zeyu Wang
Yuyin Zhou
Cihang Xie
AAML
14
6
0
06 Sep 2022
Constraining Representations Yields Models That Know What They Don't
  Know
Constraining Representations Yields Models That Know What They Don't Know
João Monteiro
Pau Rodríguez López
Pierre-Andre Noel
I. Laradji
David Vazquez
AAML
28
0
0
30 Aug 2022
Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Two Heads are Better than One: Robust Learning Meets Multi-branch Models
Dong Huang
Qi Bu
Yuhao Qing
Haowen Pi
Sen Wang
Heming Cui
OOD
AAML
16
0
0
17 Aug 2022
Increasing Confidence in Adversarial Robustness Evaluations
Increasing Confidence in Adversarial Robustness Evaluations
Roland S. Zimmermann
Wieland Brendel
Florian Tramèr
Nicholas Carlini
AAML
36
16
0
28 Jun 2022
Semi-supervised Semantics-guided Adversarial Training for Trajectory
  Prediction
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Ruochen Jiao
Xiangguo Liu
Takami Sato
Qi Alfred Chen
Qi Zhu
AAML
23
20
0
27 May 2022
Adversarial Attack on Attackers: Post-Process to Mitigate Black-Box
  Score-Based Query Attacks
Adversarial Attack on Attackers: Post-Process to Mitigate Black-Box Score-Based Query Attacks
Sizhe Chen
Zhehao Huang
Qinghua Tao
Yingwen Wu
Cihang Xie
X. Huang
AAML
106
28
0
24 May 2022
Diffusion Models for Adversarial Purification
Diffusion Models for Adversarial Purification
Weili Nie
Brandon Guo
Yujia Huang
Chaowei Xiao
Arash Vahdat
Anima Anandkumar
WIGM
195
415
0
16 May 2022
Adversarial Robustness through the Lens of Convolutional Filters
Adversarial Robustness through the Lens of Convolutional Filters
Paul Gavrikov
J. Keuper
25
15
0
05 Apr 2022
Generating High Fidelity Data from Low-density Regions using Diffusion
  Models
Generating High Fidelity Data from Low-density Regions using Diffusion Models
Vikash Sehwag
C. Hazirbas
Albert Gordo
Firat Ozgenel
Cristian Canton Ferrer
DiffM
25
66
0
31 Mar 2022
Finding Biological Plausibility for Adversarially Robust Features via
  Metameric Tasks
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks
A. Harrington
Arturo Deza
OOD
AAML
21
20
0
02 Feb 2022
12
Next