ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.11013
24
18

Spatial Location Constraint Prototype Loss for Open Set Recognition

21 October 2021
Ziheng Xia
Ganggang Dong
Penghui Wang
Hongwei Liu
    UQCV
    BDL
ArXivPDFHTML
Abstract

One of the challenges in pattern recognition is open set recognition. Compared with closed set recognition, open set recognition needs to reduce not only the empirical risk, but also the open space risk, and the reduction of these two risks corresponds to classifying the known classes and identifying the unknown classes respectively. How to reduce the open space risk is the key of open set recognition. This paper explores the origin of the open space risk by analyzing the distribution of known and unknown classes features. On this basis, the spatial location constraint prototype loss function is proposed to reduce the two risks simultaneously. Extensive experiments on multiple benchmark datasets and many visualization results indicate that our methods is superior to most existing approaches.

View on arXiv
Comments on this paper