ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.11802
  4. Cited By
Deep Convolutional Autoencoders as Generic Feature Extractors in
  Seismological Applications

Deep Convolutional Autoencoders as Generic Feature Extractors in Seismological Applications

22 October 2021
Qingkai Kong
A. Chiang
A. C. Aguiar
M. G. Fernández-Godino
S. Myers
Donald D. Lucas
ArXivPDFHTML

Papers citing "Deep Convolutional Autoencoders as Generic Feature Extractors in Seismological Applications"

3 / 3 papers shown
Title
A Staged Deep Learning Approach to Spatial Refinement in 3D Temporal
  Atmospheric Transport
A Staged Deep Learning Approach to Spatial Refinement in 3D Temporal Atmospheric Transport
M. G. Fernández-Godino
Wai Tong Chung
Akshay A. Gowardhan
M. Ihme
Qingkai Kong
Donald D. Lucas
S. Myers
66
0
0
14 Dec 2024
Combining Deep Learning with Physics Based Features in
  Explosion-Earthquake Discrimination
Combining Deep Learning with Physics Based Features in Explosion-Earthquake Discrimination
Qingkai Kong
Ruijia Wang
W. Walter
M. Pyle
K. Koper
B. Schmandt
AI4CE
15
35
0
12 Mar 2022
Predicting Wind-Driven Spatial Deposition through Simulated Color Images
  using Deep Autoencoders
Predicting Wind-Driven Spatial Deposition through Simulated Color Images using Deep Autoencoders
M. G. Fernández-Godino
Donald D. Lucas
Qingkai Kong
20
6
0
03 Feb 2022
1