ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.12919
14
13

WOLF: A modular estimation framework for robotics based on factor graphs

25 October 2021
J. Solà
Joan Vallve-Navarro
Joaquim Casals
Jeremie Deray
Médéric Fourmy
Dinesh Atchuthan
Andreu Corominas-Murtra
Juan Andrade-Cetto
ArXivPDFHTML
Abstract

This paper introduces WOLF, a C++ estimation framework based on factor graphs and targeted at mobile robotics. WOLF can be used beyond SLAM to handle self-calibration, model identification, or the observation of dynamic quantities other than localization. The architecture of WOLF allows for a modular yet tightly-coupled estimator. Modularity is enhanced via reusable plugins that are loaded at runtime depending on application setup. This setup is achieved conveniently through YAML files, allowing users to configure a wide range of applications without the need of writing or compiling code. Most procedures are coded as abstract algorithms in base classes with varying levels of specialization. Overall, all these assets allow for coherent processing and favor code re-usability and scalability. WOLF can be used with ROS, and is made publicly available and open to collaboration.

View on arXiv
Comments on this paper