ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2110.13475
  4. Cited By
Vector-valued Distance and Gyrocalculus on the Space of Symmetric
  Positive Definite Matrices

Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

26 October 2021
F. López
Beatrice Pozzetti
Steve J. Trettel
Michael Strube
Anna Wienhard
ArXivPDFHTML

Papers citing "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices"

13 / 13 papers shown
Title
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
Ce Ju
Reinmar J. Kobler
Antoine Collas
M. Kawanabe
Cuntai Guan
Bertrand Thirion
41
0
0
26 Apr 2025
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
A Riemannian Framework for Learning Reduced-order Lagrangian Dynamics
Katharina Friedl
Noémie Jaquier
Jens Lundell
Tamim Asfour
Danica Kragic
AI4CE
26
0
0
24 Oct 2024
RMLR: Extending Multinomial Logistic Regression into General Geometries
RMLR: Extending Multinomial Logistic Regression into General Geometries
Ziheng Chen
Yue Song
Rui Wang
Xiaojun Wu
N. Sebe
41
2
0
28 Sep 2024
Product Geometries on Cholesky Manifolds with Applications to SPD
  Manifolds
Product Geometries on Cholesky Manifolds with Applications to SPD Manifolds
Ziheng Chen
Yue Song
Xiao-Jun Wu
N. Sebe
40
2
0
02 Jul 2024
Matrix Manifold Neural Networks++
Matrix Manifold Neural Networks++
Xuan Son Nguyen
Shuo Yang
A. Histace
32
5
0
29 May 2024
Normed Spaces for Graph Embedding
Normed Spaces for Graph Embedding
Diaaeldin Taha
Wei-Ye Zhao
J. M. Riestenberg
Michael Strube
40
1
0
03 Dec 2023
Riemannian Residual Neural Networks
Riemannian Residual Neural Networks
Isay Katsman
Eric Chen
Sidhanth Holalkere
Anna Asch
Aaron Lou
Ser-Nam Lim
Christopher De Sa
18
10
0
16 Oct 2023
Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in Symmetric
  Positive Definite Matrices
Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in Symmetric Positive Definite Matrices
Weichen Zhao
Federico López
J. M. Riestenberg
Michael Strube
Diaaeldin Taha
Steve J. Trettel
23
7
0
24 Jun 2023
Riemannian Multinomial Logistics Regression for SPD Neural Networks
Riemannian Multinomial Logistics Regression for SPD Neural Networks
Ziheng Chen
Yue Song
Gaowen Liu
Ramana Rao Kompella
Xiaojun Wu
N. Sebe
35
4
0
18 May 2023
Building Neural Networks on Matrix Manifolds: A Gyrovector Space
  Approach
Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach
X. Nguyen
Shuo Yang
26
11
0
08 May 2023
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet
  Transform based on Helgason-Fourier Analysis
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
13
15
0
03 Mar 2022
Heterogeneous manifolds for curvature-aware graph embedding
Heterogeneous manifolds for curvature-aware graph embedding
Francesco Di Giovanni
Giulia Luise
M. Bronstein
54
23
0
02 Feb 2022
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
238
3,234
0
24 Nov 2016
1