Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2110.13864
Cited By
FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective
26 October 2021
Jingwei Sun
Ang Li
Louis DiValentin
Amin Hassanzadeh
Yiran Chen
H. Li
FedML
OOD
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective"
13 / 13 papers shown
Title
Secure Cluster-Based Hierarchical Federated Learning in Vehicular Networks
M. S. HaghighiFard
Sinem Coleri
AAML
33
0
0
02 May 2025
Poisoning Prevention in Federated Learning and Differential Privacy via Stateful Proofs of Execution
Norrathep Rattanavipanon
Ivan de Oliviera Nunes
86
0
0
28 Jan 2025
Lossless Privacy-Preserving Aggregation for Decentralized Federated Learning
Xiaoye Miao
Bin Li
Yangyang Wu
Meng Xi
Xinkui Zhao
31
0
0
08 Jan 2025
Gradient Purification: Defense Against Poisoning Attack in Decentralized Federated Learning
Bin Li
Xiaoye Miao
Yongheng Shang
Xinkui Zhao
AAML
49
0
0
08 Jan 2025
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
39
244
0
20 Jul 2023
FedDefender: Client-Side Attack-Tolerant Federated Learning
Sungwon Park
Sungwon Han
Fangzhao Wu
Sundong Kim
Bin Zhu
Xing Xie
Meeyoung Cha
FedML
AAML
25
20
0
18 Jul 2023
Skefl: Single-Key Homomorphic Encryption for Secure Federated Learning
Dongfang Zhao
FedML
35
0
0
21 Dec 2022
Client Selection in Federated Learning: Principles, Challenges, and Opportunities
Lei Fu
Huan Zhang
Ge Gao
Mi Zhang
Xin Liu
FedML
34
115
0
03 Nov 2022
Network-Level Adversaries in Federated Learning
Giorgio Severi
Matthew Jagielski
Gokberk Yar
Yuxuan Wang
Alina Oprea
Cristina Nita-Rotaru
FedML
22
17
0
27 Aug 2022
Robust and Privacy-Preserving Collaborative Learning: A Comprehensive Survey
Shangwei Guo
Xu Zhang
Feiyu Yang
Tianwei Zhang
Yan Gan
Tao Xiang
Yang Liu
FedML
31
9
0
19 Dec 2021
Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning
Shaoxiong Ji
Yue Tan
Teemu Saravirta
Zhiqin Yang
Yixin Liu
Lauri Vasankari
Shirui Pan
Guodong Long
A. Walid
FedML
37
76
0
25 Feb 2021
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
168
564
0
27 Jul 2020
Analyzing Federated Learning through an Adversarial Lens
A. Bhagoji
Supriyo Chakraborty
Prateek Mittal
S. Calo
FedML
191
1,032
0
29 Nov 2018
1